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ARTICLE INFO ABSTRACT

JEL codes: This study explores exposure to artificial intelligence (AI) technologies and employment patterns in Europe. First,
J21 we provide a thorough mapping of European regions focusing on the structural factors—such as sectoral
J23 specialisation, R&D capacity, productivity and workforce skills—that may shape diffusion as well as economic
ng and employment effects of Al To capture these differences, we conduct a cluster analysis which group EU regions
in four distinct clusters: high-tech service and capital centres, advanced manufacturing core, southern and
iﬁﬁz;::imelligence eastern periphery. We then discuss potential employment implications of Al in these regions, arguing that while
Labour regions with strong innovation systems may experience employment gains as Al complements existing capa-
Employment bilities and production systems, others are likely to face structural barriers that could eventually exacerbate
Regions regional disparities in the EU, with peripheral areas losing further ground.
Europe

1. Introduction

The rapid advancement of artificial intelligence (AI) technologies has
sparked a lively debate regarding its potential impact on economies and,
in particular, on labour markets. This debate is not new: the ‘man vs.
machine’ race has been a recurring theme since the times of Smith,
Ricardo and Marx. Concerns over a new wave of Al-driven technological
unemployment are bringing back to the fore the same fears that sur-
rounded previous waves of automation and digitalisation (Frank et al.,
2019; Autor, 2022).!

When it comes to the disruptive effects of Al, there are at least three
discontinuities that are worth mentioning. First, Al technologies are, for
the first time, putting man and machine in competition over tasks so far
unattainable for non-human devices, particularly in the service sector.
Generative Als —e.g., OpenAI's Chat-GPT or Google’s Bard— are
already demonstrating their potential to replicate and, in some cases,
outperform humans in carrying out activities requiring complex
reasoning and judgements, such as legal or medical advice (Felten et al.,
2023). For instance, the interpretation of x-ray images and other med-
ical imaging diagnostics, typically a non-routine cognitive task requiring
a lot of knowledge and experience, is now within AI's scope. In other
words, workers now face competition in their core competencies, which
explains the ‘this time could be different’ attitude with regards to the
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labour market effects of technology. Second, Al is expected to magnify
the potential of key automation technologies (e.g., robots), paving the
way for job disruption also in manufacturing. Third, as Al-related
technologies, knowledge and capabilities are not homogeneously
distributed, this technological wave may exacerbate regional in-
equalities both across and within countries, with peripheral areas losing
further ground as new forms of techno-economic dependency begin to
emerge (Korinek and Stiglitz, 2021). On the other hand, AI promises to
complement and assist workers in carrying out a number of tasks, in
services and manufacturing alike (Gmyrek et al., 2023). Increasing
productivity may spur labour demand, potentially compensating
Al-induced job disruptions, should the latter take place. By the same
token, organisational efficiency—-including managerial tasks aimed at
monitoring, coordinating and directing workers-will take a leap for-
ward, resulting in potential labour-saving effects as well as changes in
the composition of occupational profiles and their relative position
within organisations (Chowdhury et al., 2023). New sectors and market
niches are also about to emerge. Thus, it is hard to predict how many
jobs this will create, as a significant share of disruptive Al applications
are in their initial stage of development (Mondolo, 2022).

In this context, empirical research is struggling to provide policy-
makers with robust evidence that could prove useful in tailoring AlI-
related policies and regulations (Autor, 2022). As the diffusion of Al

! The ‘man vs machine’ race is already found in the writings of Keynes on the future of work (Keynes, 2010[1931]).
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gains momentum and its potential applications flourish across sectors (e.
g., education, finance, legal counselling, insurance), attempts to assess
its employment impact multiply (among others, see Brynjolfsson et al.,
2018; Felten et al., 2021; Webb, 2020; Acemoglu et al., 2022; Albanesi
et al., 2023).> Most existing research has focused on the US, largely
converging towards a positive relationship between Al and employment,
particularly concerning high-skill occupations. However, given that
most of the available evidence relies on ‘potential’ measures of Al
exposure, different outcomes may arise once data on actual adoption in
sectors and firms are available, especially due to the early stage of the Al
diffusion process.

An important role could also be played by heterogeneously distrib-
uted supply, demand and structural factors that are likely to influence
the Al-employment nexus (Reljic et al., 2021; Xiao and Boschma, 2023).
Countries and regions characterised by a larger share of knowledge
intensive services are those where deployment of new technologies
could be most rapid, especially with regard to Al applications capable of
complementing human tasks. In contrast, where medium-technology
sectors prevail and firms are predominantly adopters of technologies
provided by external suppliers, labour substitution could prevail
(Calvino and Fontanelli, 2023). Furthermore, the presence of labour
market institutions aimed at protecting workers against dismissal could
slow down the eventual process of Al-driven destruction of occupations
(Pianta and Reljic, 2022). These are all elements which may ultimately
contribute to determining the net (direct and indirect) employment
impact of AL, as well as its distribution in space and time.

Given its complex multi-purpose nature, measuring Al and, even
more so, the impact it may have on employment is a challenging
endeavour. Despite the rapid diffusion of Al technologies across Europe,
studies analysing their employment effects—particularly in light of
significant structural heterogeneity across regions—remain limited. To
address this research gap, we first conduct a cluster analysis to group
European regions according to their readiness to adopt (and benefit)
from Al technologies. This analysis incorporates multiple dimensions,
including AI exposure, robot adoption, R&D investment, sectoral
composition, labour productivity and workforce skills. Second, building
on the cluster analysis results, we discuss potential scenarios of how Al
could affect employment dynamics within these regional clusters.

Our analysis reveals not only the uneven exposure to Al technologies
across regions but also the asymmetric distribution of capabilities and
absorptive capacity needed to fully exploit AI's potential. We argue that
the interplay of structural factors—sectoral specialisation, skills and
innovation capacity—will likely determine whether regions emerge as
early adopters (and developers) of AI, with varying impacts on
employment.

Our man results show that, in high-tech service and capital regions
(e.g., Berlin, Ile-de-France, Prague, Vienna), preexisting local capabil-
ities are likely to facilitate AI diffusion and enable Al technologies to
complement existing knowledge-intensive economic activities, poten-
tially resulting in positive employment outcomes. Conversely, regions in
southern Europe (e.g., the Greek islands, southern Italy, Andalusia)
seem to be trapped in a vicious circle of low growth, weak R&D in-
vestment, limited skills and low productivity. Their economic structur-
e—still heavily reliant on agriculture and tourism—is likely to hinder
the initial adoption of Al and limit their ability to capitalise on its
benefits later, potentially exacerbating existing economic disparities
within the EU.

The advanced manufacturing core regions— predominantly located
in Germany, though there are some notable exceptions, such as Italian
Piedmont, Spanish Navarra and French Alsace —with their strong in-
dustrial base, high robot density, substantial R&D investment and high-
skilled workforce, are well-positioned to benefit from both diversifying

2 For an earlier review of the literature on the Al-employment nexus, see
Barbieri et al. (2020) and Mondolo (2022).

12

Structural Change and Economic Dynamics 73 (2025) 11-24

into emerging Al-related areas and integrating Al into their existing
capital-intensive production systems. As Al enhances automation tech-
nologies, including robots (Agrawal et al., 2019), these regions are
poised to seize new opportunities for process automation. However, this
also brings the risk of Al-driven job displacement, unless efficiency gains
translate into new employment opportunities. While the final employ-
ment outcome remains uncertain, the positive correlation between Al
exposure and employment growth in these regions provides some
grounds for optimism.

Meanwhile, eastern European peripheral regions, despite facing
similar challenges to southern Europe in terms of skills and innovation
capacity, recorded the highest employment growth during the observed
period, largely driven by manufacturing. However, their reliance on
low-skill and labour-intensive activities (such as fabrication) makes
them more susceptible to the negative employment effects of Al-driven
automation. Without significant structural upgrading, eastern periph-
eral regions are likely to face greater difficulties in integrating Al in ways
that complement workers, compared to the more advanced
manufacturing core regions.

This paper is organised as follows. Section 2 provides a review of the
literature, highlighting key issues and systematising the available
empirical evidence. Section 3 spells out our main research question,
while data and descriptive evidence are provided in Section 4. Cluster
analysis and main results are reported in Section 5, while Section 6
concludes by discussing policy implications, limitations of the analysis
and avenues for future research.

2. The diffusion of Al and its economic implications: a literature
review

Stimulated by the proliferation of potentially disruptive applications
(e.g., autonomous machines, next-gen recommender systems, high-
performance image recognition technologies), the literature analysing
the diffusion of AI and its economic implications is rapidly growing. In
what follows, we provide a brief review of the extant literature focusing
on two major streams. The first group of contributions analyses AI's
diffusion patterns, highlighting their asymmetric nature and identifying
the structural elements (e.g., technological capabilities, infrastructures,
institutions) shaping diffusion at the sectoral and territorial level. The
second group includes contributions that, building on different in-
dicators to capture relative exposure to and/or actual use of such tech-
nologies (for a review, see Guarascio and Reljic, 2024), investigate the
employment impact of Al Indeed, these two literature streams are
conceptually intertwined, although rather separated within the broad
corpus of contributions focusing on Al In fact, an appropriate assess-
ment of the economic and employment implications of AI cannot
disregard the structural elements that may favour
vergence/divergence in the diffusion process, including the asymmetric
distribution of Al-related gains/costs.

con-

2.1. The geography of Al structural drivers and diffusion patterns

The diffusion of new technologies is never homogeneous across
sectors, regions and countries. Rather, these are more likely to emerge
and concentrate in areas where certain enabling conditions are present,
highlighting the local and path-dependent nature of technological
diffusion (Boschma, 2017). The literature identified a range of factors
explaining why the adoption of new technologies emerge in certain
areas rather than others (Rigby, 2015). Key elements include absorptive
capacity, cognitive proximity, relative strength of the national and
regional systems of innovation (Cohen and Levinthal, 1990). Concerning
path-dependency, what matters is the positive correlation between size
and quality of technological capabilities, on the one hand, and the ca-
pacity to capture new technological opportunities, on the other. Where
capabilities are large and rich absorptive capacity is expected to in-
crease, giving rise to reinforcement mechanisms which may lead to
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divergence between the most dynamic sectors/areas and those lagging
behind. Relatedly, many authors underlined the correlation between
macroeconomic (i.e., intensity and composition of demand flows) and
structural conditions (e.g., skills, size and quality of relevant in-
frastructures) that heterogeneously characterise sectors and geograph-
ical areas and their propensity to adopt and develop innovations
(Bogliacino and Pianta, 2010; Dosi et al., 2021; Guarascio et al., 2017;
Pianta and Reljic, 2022; Reljic et al., 2021). Countries, industries and
regions facing relatively more intense demand flows and endowed with
the appropriate skills and infrastructures are expected to be faster in
developing, adopting as well as in seizing the economic opportunities
associated to new technologies. Technological capabilities and diffusion
processes are also related to the hierarchical structure of Global Value
Chains (GVCs).” Far from being evenly distributed, strategic functions
related to, among other things, development, control and management
of innovations (e.g., R&D, product design), are concentrated near the
headquarters of the companies dominating GVCs. This may further
contribute to the uneven distribution of technological capabilities and,
related to that, of the value (extra profits, rents) that can be extracted
from innovations. Sectoral specialisation matters too. Automation
technologies (e.g., robots) tend to be concentrated in areas where
manufacturing activities prevail. On the contrary, IT and digitalisation
technologies are to a significant extent concentrated where services,
and, particularly, ‘knowledge-intensive’ ones (Evangelista et al., 2013),
are prevalent (Bontadini et al., 2022).

When it comes to the diffusion of AI technologies, the available ev-
idence displays a rather polarised landscape. Focusing on Al-related
patents, Fanti et al. (2022) show how the diffusion of this set of tech-
nologies (e.g., machine learning, neural networks, sound and image
recognition systems) is reinforcing the overall trend towards market
concentration traditionally characterising the ICT techno-economic
paradigm (Dosi and Virgillito 2019). Building on their strong capabil-
ities and acquiring most of the more promising Al start-ups, few trans-
national corporations (i.e., Big-Tech) are consolidating their dominant
positions also in this ‘new’ technological domain/market segment (for a
discussion on the long-term evolution of the Al technological trajectory
and related discontinuities, see Fanti et al. 2022). Along these lines,
Maslej et al. (2024) have recently provided a more in-depth and updated
analysis of the global distribution of Al-related patents and R&D activ-
ities. Regarding patents, the authors document significant polarisation
both geographically and at the corporate level. Of all Al patents granted
between 2010 and 2022, approximately 62 % originated from China, 20
% from the US, and only 3 % from applications submitted by the EU and
the UK. A similar pattern is detected in what Maslej et al. (2024) define
as ‘notable machine learning models’ and the ‘foundational models’ that
are behind generative Als (e.g., Bard, ChatGPT, Gemini). In both cases,
the US and China hold the lion’s share: between 2003 and 2023, around
the 76 % of these models have been developed in the two countries (61
% in the US and 15 % in China) with few followers (France, Germany,
Canada) lagging far behind. As for corporations owning the leading
foundational models, the usual suspects come to the fore: Alphabet,
Meta, Microsoft and OpenAl dominate the ranking.

These trends are confirmed when looking at investments in Al-
related ventures (about 65 % of total investments are located in the
US) while around two-thirds of newly funded AI companies were
established in the US and China (the data refer to 2023, for more details,
see Maslej et al., 2024). Distinguishing between different technological
trajectories of Al patents (short-range, academic, technical, broad view),
Hotte et al. (2023) highlight, again, that AI inventions are highly
concentrated within a few firms. Among the top patentees, companies
such as Amazon, IBM, Intel, Microsoft and Samsung stand out. Indeed,
although these authors provide further confirmation of the powerful

3 For a thorough discussion, see Stollinger (2021) and Coveri and Zanfei
(2023).
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position of a few Big Tech companies in the Al technological domain, no
clear empirical evidence is provided regarding a generalised concen-
tration in Al patenting (to conduct their analysis, Hotte et al. (2023)
analyse the evolution of the Herfindal-Hirschman index between 1990
and 2019). Dibiaggio et al. (2024) provide further evidence regarding
the geographical polarisation of Al-related technological capabilities.
Relying on three major patents classifications (International Patent
Classification, Cooperative Patent Classification and the File Index / File
forming terms) to analyse EPO PATSTAT data, they confirm the polar-
isation documented by previous contributions yet reporting a stronger
position of China vis-a-vis the US: in absolute terms, China records a
larger number of Al related patents, while the number of EU27 patents is
almost a third that of US ones. A rather different picture emerges
regarding Al-related scientific publications as reported by the Scopus
database. In this case, the US and the EU27 report the highest number of
publications, while China ranks third (Dibiaggio et al., 2024).

The asymmetric diffusion of Al technologies, heterogeneous distri-
bution of capabilities and structural drivers and resulting polarisation
dynamics are detected also at the regional level. This is not surprising,
though, as agglomeration dynamics and innovation patterns are closely
related to the relative strength of local innovation systems (Balland
et al., 2015). In this context, Xiao and Boschma (2023) rely on patent
data to investigate the knowledge production of Al technologies in 233
European regions observed from 1994 to 2017. Their analysis reveals
that regions displaying the highest share of Al patents are those char-
acterised by a strong pre-existing ICT knowledge base, confirming the
importance of cumulative and path-dependent dynamics in explaining
diffusion processes. These findings are in line with previous evidence
provided by Buarque et al. (2020). Through a similar geographical
mapping of Al technologies in European regions, these authors show
that the most successful Al regions are those where Al technologies are
most embedded in their knowledge space.

In fact, as argued before, the ability to absorb and, even more so, to
develop digital technologies, including Al, is strongly related to the
availability of an appropriate skill-base. Regarding AI technologies,
what matters is the relative endowment of digital skill, particularly the
most advanced ones. In this respect, Caravella et al. (2023) propose a
new regional ‘digital skill index’, distinguishing between users, practi-
tioners and developers, to explore the diffusion of digital skills in
Europe. As expected, they document a polarisation dynamic similar to
the one highlighted by Xiao and Boschma (2023) regarding Al-related
knowledge. In particular, they report that the factors shaping the dis-
tribution of digital skills at the regional level are: i) the concentration of
large and high-tech/knowledge intensive corporations; ii) the presence
of a qualified workforce that magnifies complementarity with digital
technologies; and iii) sustained aggregate demand.

In a nutshell, virtually all the elements (e.g., knowledge base proxied
by patents and publications, investments, competences, share of high-
tech-firms, sustained demand flows) that, from a theoretical view-
point, are expected to explain the asymmetric and often polarised dis-
tribution of frontier technologies emerge as key drivers of diffusion, also
in the case of AL

2.2. The Al-employment nexus

Although it is relatively recent, the corpus of empirical literature
focusing on the Al-employment nexus is large enough to be distin-
guished according to the adopted unit of analysis and related approach
to measure the potential/actual penetration of such technologies.

A significant group of contributions relies on occupation and ability-
based indicators to assess the relative ‘Al exposure’ (Felten et al., 2018),
i.e., the likelihood that an occupation will come into contact with, be
assisted or replaced by Al, given the characteristics of the tasks per-
formed and the underlying abilities. In line with the literature studying
the employment impact of ICTs distinguishing occupations according to
the degree of ‘routineness’ of their tasks (Autor et al., 2003) or
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automation probabilities (Frey and Osborne, 2017), this stream of works
starts by ranking jobs considering the importance and prevalence of
abilities that occupations ‘share’ with Al (Tolan et al., 2021). Bryn-
jolfsson et al. (2018) focus on advancements in machine learning (ML)
technologies, which are at the basis of virtually all Al applications.
Relying on the rubric evaluating task potential for ML proposed in
Brynjolfsson and Mitchell (2017), the authors introduce a task-based
measure of ‘Suitability for Machine Learning’ (SML) linking it to 18,
156 tasks included in the O*NET" database. Their key results are sum-
marised as follows: i) most of the occupations included in O*NET display
at least some SML tasks; ii) only few of them turn out to be fully
replaceable by Al technologies; and iii) redesign of job task content is
often required to employ such technologies. Another occupation-based
measure is proposed by Felten et al. (2018, 2021), who link the ten
most promising Al applications (e.g., image recognition, language
modelling, translation, among others) to human abilities included in
O*NET. Felten et al. (2021)’s Al Occupational Exposure (AIOE) scores
identify white-collar workers as the most exposed occupational group.
However, the measure remains silent on the likelihood of Al having a
complementary or substitutive effect.

The only attempt to apply Felten et al. (2021)’s occupation-based
methodology to assess the employment impact of Al on the European
economy is the one by Albanesi et al. (2023) and Guarascio and Reljic
(2024). Using a crosswalk, analogous to the one upon which our analysis
is based, to link the O*NET-based AIOE to European 3-digit occupa-
tions,” Albanesi et al. (2023) find that, in Europe, employment shares
tend to increase in occupations more exposed to Al The evidence is
particularly significant for those occupations characterised by a rela-
tively higher proportion of younger and skilled workers. Focusing on 16
European countries over the period 2011- 2019, these authors argue
that, although country-level heterogeneities do matter, particularly
concerning differences in terms of pace of technological diffusion, ed-
ucation levels, product market regulation and employment protection
laws, there is no EU country where the share of the most Al-exposed
occupations tends to decline.

On the other hand, Guarascio and Reljic (2024) report that occupa-
tions more exposed to Al technologies display stronger employment
growth compared to the rest of the workforce. Yet, even in this case,
heterogeneous patterns are in order. Positive employment outcomes
tend to be concentrated in Innovation Leaders® (Belgium, Denmark,
Finland, the Netherlands and Sweden) and Strong Innovators (Austria,
Cyprus, France, Germany, Ireland and Luxembourg), while no effects are
observed in Moderate (Czechia, Estonia, Greece, Hungary, Italy,
Lithuania, Portugal and Spain) and Emerging Innovators (Croatia,
Latvia, Poland, Romania and Slovakia). In line with the literature
studying the distribution of Al-related technological capabilities (as
noted above), these findings confirm that a country’s innovation system
relative strength and, relatedly, its ‘absorptive capacity’ play a key role
in explaining the distribution of Al-related (potential) employment (and
economic) gains.

Recently, Felten et al. (2023) updated their indicator to isolate ad-
vances in Language Modelling (LM) —i.e., the Al technology which is key

4 The O*NET program is the US primary source of occupational information.
Central to the project is the O*NET database, containing information on hun-
dreds of standardized and occupation-specific descriptors. The database is
continually updated by surveying a broad range of workers from each
occupation.

5 The O*NET repository uses SOC occupational codes used in the US, while
EU member states follow the International Standard Classification of Occupa-
tions (ISCO) to classify occupations. 3-digit ISCO codes are referred to as sub-
minor groups. See also Section 4.

S To capture the role of country-specific technological capabilities, Guarascio
and Reljic (2024) rely on the classification stemming from the European
Innovation Scoreboard.

14

Structural Change and Economic Dynamics 73 (2025) 11-24

for the development of frontier ‘generative’ applications such as GPT-4 —
to determine if and to what extent such a specific technological devel-
opment could have a peculiar impact on employment. To do so, the
AIOE undergoes a weighting procedure, allowing it to order occupations
according to the number of abilities that are related to LM, disregarding
the other Al-related abilities included in the original indicator. Although
most of the top-exposed occupations appear in the list provided in Felten
et al. (2021), some relevant ‘new entries’ are worth mentioning. Among
the top occupations exposed to LM Al are telemarketers and various
post-secondary teachers in fields such as English language and litera-
ture, foreign language and literature and history. Concerning the dis-
tribution of the LM Al indicator across industries, the sectors displaying
the highest values include legal services and securities, commodities and
investments.

Focusing on occupations but adopting a different approach, Gmyrek
et al. (2023) assess the employment impact of Generative Pre-Trained
Transformers (GPTs). Unlike Felten et al. (2021, 2023), these authors
use Chat GPT-4 to estimate task-level scores of occupation exposure to
AL This ranking is then used to quantify the impact of Al on employment
and job quality, by country and income group. According to their esti-
mations, only occupations related to clerical work are highly exposed to
Al with 24 % of clerical tasks considered highly exposed and an addi-
tional 58 % with medium-level exposure. Concerning other occupational
groups, the greatest share of highly exposed tasks ranges between 1 %
and 4 %, and medium exposed tasks do not exceed 25 %. As a result, they
reject the hypothesis of massive substitution, pointing instead to com-
plementary effects that are concentrated among white collars and
high-skilled occupations. A similar analysis is carried out by Elondou
et al. (2023), who combine experts’ opinion and GPT-4 classifications to
quantify the impact of GPTs on the US labour market. Merging task-level
information stemming from O*NET and employment data drawn from
the Bureau of Labour Statistics (BLS) referring to the years 2020 and
2021, these authors reveal that around 80 % of the US workforce could
have at least 10 % of their work tasks affected by GPTs, while almost one
fifth of occupations could have up to 50 % of their tasks impacted.
Confirming previous evidence, the highest level of exposure is concen-
trated at the top of the occupational distribution, among high-skilled
and high-income workers.

Despite being very useful for characterising occupations according to
their relative AI exposure, occupation and task-based measures have
notable limitations. First, this type of indicator provides a proxy of
‘potential’ Al exposure, remaining silent on whether such technologies
are actually employed — along with the ‘how, when and where’. Second,
and relatedly, these indicators lack any information about industry- and
firm-level technological heterogeneities which, as discussed above, may
play a key role in shaping the impact of such technologies. In an attempt
to account, jointly, for technological and occupational heterogeneities,
Webb (2020) developed an indicator tracking the co-occurrence of
verb-noun pairs in the title of Al patents and O*NET tasks. In this way,
he obtains a measure which considers, at the same time, technological
choices of firms (and fine-grained characteristics of specific Al tech-
nologies) as illustrated in patents and task-related characteristics of
occupations, as reported in O*NET. According to Webb (2020)’s results,
Al is more likely to affect skilled and older workers than previous
innovation waves, such as robots or software. However, the robustness
of this mixed patent-occupation Al exposure measure is partly under-
mined by the fact that patent titles do not fully describe the underlying
technology. No less relevant, restricting co-occurrence to verb-noun
pairs risks increasing false positives.

Among the few firm-level studies analysing the employment impli-
cations of Al, there is a contribution by Damioli et al. (2023). These
authors rely on a sample of 3.500 front-runner companies, stemming
from the Orbis BvD database, which patented Al-related inventions over
the period 2000-2016 (data are drawn from the PATSTAT database).
The coefficient associated with Al patents is always positive and sig-
nificant, despite being relatively small in terms of size, which points to a
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moderate positive employment impact of AI patenting (with a
short-term elasticity of about 3-4 %). Such a ‘labour-friendly’ effect is
paralleled by an analogously positive and significant effect of other
(non-Al) firm innovation activities. These findings confirm the
employment-friendly nature of product innovation in general and pro-
vide novel firm-specific evidence on emerging Al technologies. How-
ever, it’s important to note that patents serve as a partial measure of
product innovation, as not all innovation activities are patented, rather
than direct Al adoption. Additionally, as the study focuses solely on
patenting companies, it remains silent on the net aggregate effect, failing
to account for aspects such as ‘business stealing’ (see Calvino and Vir-
gillito, 2018).

Another way to look at the relationship between Al technologies and
employment is to use job-posting data. In a seminal work, Acemoglu
et al. (2022) rely on Burning Glass Technologies data, which provide
wide coverage of firm-level online job postings, linked to SOC occupa-
tional codes to assess the relative penetration of Al technologies at the
establishment level in the US. To quantify the degree of firm-level Al
exposure, they employ three definitions, namely those proposed by
Brynjolfsson et al. (2018), Felten et al. (2021) and Webb (2020). The
authors do not find any clear employment effect of Al at the industry or
occupation-level. Instead, some evidence of a re-composition effect to-
wards more Al-intensive jobs emerges. This lack of effects is attributed
to the relatively limited diffusion of Al technologies and the niche-level
nature of adoption. In addition, no evidence of direct complementarity
between Al job posts and non-Al jobs arises, hinting at a prevalent
substitution effect and workforce re-composition, rather than produc-
tivity enhancement after Al adoption. While online job vacancies offer a
rich data source, caution is necessary when assessing their representa-
tiveness of overall labour demand, as they tend to be biased toward
specific occupations, industries and countries. A systematic overview of
different Al proxies, along with the main findings and their limitations,
is available in Table A1 in Appendix.

It is not only about cognitive activities and services, however. Al is
poised to enhance the capabilities and scope of a number of automation
technologies, including robots (Agrawal et al. 2019). This connection
between Al and digital technologies is also more broadly in line with the
claim by CIIP (2022) that digitalisation, particularly in the industrial
domain, is less about new tangible technologies and more about the
integration of existing technologies stemming from the ‘physical’ and
‘ICT” worlds. As robots and other machines become ‘smarter’-that is,
capable of learning and adjusting their ‘behaviour’ in ever more com-
plex productive contexts—opportunities for process automation and
related efficiency gains grow (Barbieri et al. 2020). If this is the case, a
wave of Al-induced job destruction in manufacturing could be on the
way (Autor, 2022)-unless the same efficiency gains translate into
compensation mechanisms capable of offsetting the not so remote pos-
sibilities of job destruction (for a discussion on these mechanisms, see
Calvino and Virgillito, 2018). It is hard to say, at present, which is the
most likely scenario, as no robust empirical evidence on the impact of Al
on manufacturing seems to be available.

Four main takeaway messages emerge from this brief literature re-
view. First, much remains to be understood about the employment
impact of Al, as Al is still in its early stage of diffusion and novelties in
terms of applications and potential impact on job quality and quantity
continuing to emerge. Second, although the available indicators repre-
sent a very useful base to assess exposure and (potential) employment
impact of Al further refinements, considering both the characteristics of
occupations and actual business decisions, as well as the specifics of
industries regarding the adoption process, would be of great advantage.
Third, spatial specificities (e.g., characteristics of regions, provinces,
cities or local labour markets) must be adequately taken into account,
given the weight that these elements may have in determining the
diffusion of Al and its impact on the labour market. Fourth, more evi-
dence is needed regarding the intertwining of Al and automation tech-
nologies in manufacturing (e.g., robots). This is particularly relevant in
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the European case, where manufacturing still plays an important role
and the diffusion of Al could intertwine with transformative trends such
as the transition toward electrification in the energy and automotive
sectors.

We have now reviewed the relevant literature and highlighted the
key issues concerning the Al-employment nexus. In what follows, we
spell out our research questions, which aim to address some of the
abovementioned gaps in the literature.

3. Al exposure and employment in european regions: research
questions and contribution

As one of the world’s largest markets, Europe has seen a growing
diffusion of Al technologies, driven by its knowledge-intensive business
services and high-tech manufacturing industries (European Commis-
sion, 2018). Yet, a major technological gap vis-a-vis the US and China
has also been documented, particularly in the realm of digital technol-
ogies (Maslej et al., 2024). Therefore, at least for now, European econ-
omies and regions are regarded more as potential adopters (and, to a
certain extent, ‘regulators’ of AI) rather than developers of such tech-
nologies. It is too early to determine how this peculiar status of the
European economy will affect Al diffusion patterns and their economic
(and labour) implications. Yet, this must be taken seriously into account
when interpreting the available empirical evidence and, even more so,
in predicting technological, economic and employment dynamics
related to the unfolding of AL

Against this background, we pursue two major analytical tasks. The
first one concerns highlighting the role of technological and structural
heterogeneities in shaping the potential impact of Al across European
regions. To do so, we examine the co-evolution of Al exposure, on the
one hand; and of a set of key factors (i.e., R&D intensity, share of high-
skilled workers) likely to affect absorptive capacity as well as the dis-
tribution of Al-related gains/costs, on the other. Once different regional
clusters are grouped in terms of productive, technological and labour
market characteristics, on top of relative Al exposure, the second
analytical task regards comparing their employment patterns.

In so doing, we provide a twofold contribution to the extant litera-
ture. First, we enrich the evidence regarding the geography of Al in
Europe (Xiao and Boschma, 2023), highlighting the joint role of key
dimensions affecting strength and characteristics of local innovation
systems as well as shaping diffusion processes. This is particularly
relevant in the European case, where structural heterogeneities and
related divergence in economic and employment patterns across coun-
tries and regions constitute a major policy concern, as testified by the
large chunk of EU funds devoted to structural/cohesion policies (Darvas
et al., 2019; Landesmann and Stollinger, 2020). Second, we contribute
to the still limited body of research (Albanesi et al., 2023; Guarascio and
Reljic, 2024) exploring the employment implications of Al in Europe, by
revealing structural factors that may affect regional readiness for Al as
well as susceptibility to labour-saving effects. Third, by linking struc-
tural factors with potential employment outcomes, we show how Al
could reinforce regional inequalities in Europe.’.

More specifically, two main research questions are addressed. How
do European regions’ structural characteristics influence their capacity
to adopt and benefit from Al technologies? To explore this, we adapt
Felten et al. (2021)’s AI Occupational Exposure Index to European oc-
cupations, aggregating it to the NUTS-2 regional level (see Section 4).
Given that new technologies are more likely to emerge in regions where

7 The empirical research quantifying AI's impact on the European labour
markets remains limited compared to the US. This gap is especially pronounced
when it comes to exploring AI's potentially heterogeneous impacts across
countries and regions. While existing studies, such as Albanesi et al. (2023),
hint at country disparities in Al exposure, they do not take into account strong
inter- and intra-country structural heterogeneity characterising different areas.
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they are related to the preexisting local capabilities (Boschma, 2017), we
use a cluster analysis to examine how region-specific factors—such as
sectoral specialisation, R&D investment and workforce skills—shape
regional Al readiness. This clustering exercise allow us to identify re-
gions with high Al adoption potential and those facing structural con-
straints. Building on these clusters, we then ask: What are the likely
employment implications of Al, given these structural differences? This
question considers how regional structures might shape AI’s potential to
either complement or substitute labour. In regions characterised by high
levels of knowledge-intensive services, educational attainment and R&D
investment, Al might complement high-skilled labour, boosting pro-
ductivity and labour demand in sectors like ICT, finance and profes-
sional services. In contrast, regions dominated by labour-intensive
industries, where low- to medium-technology sectors and limited R&D
are prevalent, face structural barriers that may hinder Al adoption in the
first place.

The following sections illustrate data used, offer a comprehensive
assessment of Al occupational exposure across EU’s occupations and
regions, outline the empirical strategy and present the main results.

4. Data and descriptive evidence
4.1. Data

We combine data from several sources referring to the period
2011-2018.% Since the NUTS-2 classification has undergone changes in
some countries over time due to a combination of administrative and
statistical-related factors (Eurostat, 2020), we took specific steps to
ensure data consistency throughout this period. For regions where only
the NUTS labels changed (e.g., French regions), we simply recoded the
labels. However, in cases where the classification involved more sig-
nificant changes, such as the splitting or merging of regions, we aggre-
gated NUTS-2 regions (e.g., LT00-02, IE01-06, DE40-42).'°

Artificial Intelligence. Regarding Al, we draw on earlier works by
Felten et al. (2018, 2021), who made available the indicator of Al
occupational exposure. This indicator links various Al applications -
abstract strategy games, real-time video games, image recognition, vi-
sual question answering, image generation, reading comprehension,
language modelling, translation, speech recognition and instrumental
track recognition - to 52 workplace abilities (e.g., mathematical
reasoning, speech recognition, written comprehension, originality, body
coordination) using the mTurk web service survey.'! Occupational
exposure to Al (AIOE) is constructed by weighting the ability-level
exposure to Al with their prevalence and importance within each
occupation:

52
2 Ay * L+ I

AIOE; =
S L T

(€Y

where A; stands for the ability-level Al exposure, calculated as a sum of
relatedness scores across ten Al applications for each of the 52 abilities;
Ljx and Iy, represent prevalence and importance of each ability (j) within

8 Our sample starts in 2011 due to a major revision of ISCO (International
Standard Classification of Occupations), when ISCO-88 was succeeded by ISCO-
08, which makes comparisons before and after 2011 impossible.

9 Austria, Belgium, Bulgaria, Czech Republic, Germany, Denmark, Estonia,
Spain, Finland, France, Greece, Hungary, Ireland, Italy, Lithuania, Latvia,
Netherlands, Poland, Portugal, Romania, Sweden and Slovakia.

10 For example, in the case of Lithuania, the change in classification in 2013
resulted in the separation of Lithuania into two NUTS-2 regions.

11 The matching is realised by administering a questionnaire to 2,000 in-
dividuals, reached with Amazon’s Mechanical Turk (mTurk) web service. In-
terviewees are asked whether Al applications are related to or could be used for
each of the 52 abilities listed in the O*NET. A detailed methodology is provided
in Felten et al. (2021).

16

Structural Change and Economic Dynamics 73 (2025) 11-24

each occupation (k).

This means that occupations characterised by a higher prevalence
and importance of abilities classified as highly exposed to Al exhibit a
relatively higher exposure to Al, and vice versa. Under the assumption
that Al-related workplace abilities of US occupations are similar to those
characterising their EU counterparts'” (Albanesi et al., 2023), we map
Felten et al.’s AIOE available at the six-digit SOC occupations into the
International Classification of occupations (ISCO-08) at the four-digit
level, ultimately collapsing at the three-digit ISCO level (126) by
calculating the mean exposure across occupations. As the focus of our
analysis are European regions, we construct a regional Al exposure
(AIRE) indicator following the approach suggested by Felten et al.
(2021). To this end, we combine the occupational AI exposure (AIOE)
with the occupational distribution (ISCO 3-digit) of employees within
regions from the EU LFS, as follows:

126 EMPy;
— EMP;;

AIRE; — + AIOF; @

where EMPy;; denotes the number of employees in occupation k in re-
gion j in country i, while EMP;;, stands for the total number of employees
in region j in country i. Thus, the first term denotes the employment
share of each of the 126 ISCO 3-digit occupations in region r in 2018,
while AIOEy corresponds to occupational Al exposure, as defined in
Equation 1.'° The AIRE indicator is normalised to have a zero mean and
unit standard deviation, representing relative AI exposure across
regions.

As argued before, the main limitation of Felten et al. (2021)’s indi-
cator is that measures crowd-sourced opinions on relative exposure to Al
technologies. It sheds light on which occupations, industries, countries
and regions are most likely to be affected by advancements in Al rather
than on its actual adoption. Recent work by Marguerit (2024) attempts
to provide a proxy more similar to Al adoption constructing a measure of
overlap between Al-related questions from Stack Overflow, reflecting
the real-time problems developers are encountering and workplace
abilities. Interestingly, the correlation with Felten et al.’s indicator is
almost 1, providing reassurance about its robustness. Furthermore, we
also check the degree of correlation with the data from Eurostat ICT
business survey, reporting the percentage of enterprises employing Al
technologies. To allow for comparison, we calculate Al exposure at the
country level by combining the AIOE data with the occupational dis-
tribution (ISCO 3-digit) of employees within each country. Fig. 1 pre-
sents a scatter plot displaying the relationship between country level Al
exposure and Eurostat’s Al adoption indicator. Despite some noise, the
positive correlation (correlation coefficient: 0.57) suggests that occu-
pational AI exposure is fairly related to adoption, at least to a certain
extent. Specifically, countries with higher degree of Al exposure tend to
have a greater share of enterprises that adopt Al technologies.

While Al indicator appears effective in capturing the occupational
exposure to Al technologies (and to some extent Al adoption, see Fig. 2),
it falls short in accounting for AI's role in the realm of robotics. Indeed,
Felten et al. (2019) explicitly acknowledge their focus on ‘purely Al
technologies,” intentionally omitting consideration of ‘how the interac-
tion between advanced Al and robotics technologies affects abilities or
occupations.” Consequently, Al occupational exposure is inherently
skewed toward cognitive abilities and tasks. While this is not necessarily
a limitation, it is important to note that this indicator does not account
for the fact that AI is also enhancing automation potential in
manufacturing industries by making industrial robots more flexible,
autonomous and intelligent (IFR, 2022; Soori et al., 2023).

12 An analysis showing the US-EU within-occupation similarities in terms of
digital task content has been recently provided by Gschwent et al. (2023).

13 Note that we introduce dynamics by allowing our indicator AIRE to vary
over time, reflecting the changes in the occupational distribution.
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Fig. 1. Al exposure and share of enterprises using Al technologies by country.

Source: Authors’ elaboration based on Felten et al. and Eurostat’s ICT business survey
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Fig. 2. Al exposure across European regions in 2018.
Source: Authors’ elaboration based on Felten et al. (2021)

Robots. We rely on International Federation of Robotics (IFR) data-
base, which provides information on the robot stock and new in-
stalments at the country-industry level in manufacturing sector. As
extensively discussed in Fernandez-Macias et al. (2021), the IFR data
comes with an important caveat: they do not account for variations in
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robot quality across different industries, countries and time periods.
Nevertheless, the IFR remains the most reliable source of data upon
which empirical literature on the employment effects of robots has
flourished (see Acemoglu and Restrepo, 2020; Fernandez-Macias et al.,
2021; Jestl, 2024; Petit et al., 2023; Reljic et al., 2023; Valentini et al.,
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2023, among others).

In line with earlier studies (Jestl, 2024; Petit et al., 2023, among
others), to construct an indicator of robot density at the regional level
we assume that the distribution of robots within an industry is uniform
across regions within a country, conditional on the industry-region
employment shares. To this end, we combine industry-level data on
robot stock with employment distribution across the 2-digit NACE Rev.2
industries within regions, as follows:

I EMP;,
EMP,,

Robot stock,, = * Robot stock;, 3)

=1

where EMPj; denotes the number of employees in industry j in region r
in year t, EMP,, stands for the total number of employees in region r in
year t and J represents the complete set of industries for which robot
stock (Robot stock;;) is available.

Structural variables. Given the significant role that structural het-
erogeneities play in shaping the labour market impacts of technological
change (Reljic et al., 2023), we include several variables to capture
sectoral specialisation, skills, labour market institutions and techno-
logical factors influencing the diffusion of new technologies in regions.
First, regions with a highly educated workforce are more likely to
benefit from new technologies, attract innovative firms and sustain
positive employment trajectories. To proxy for skills, we use the per-
centage of employees with a tertiary degree, sourced from the EU LFS.
Second, the strength of labour market institutions is proxied by the share
of non-standard work (NSW), which includes all employment types
other than full-time permanent contracts. A higher share of
non-standard work suggests a greater level of labour market liberalisa-
tion. Additionally, firm size maybe an important determinant of Al
adoption. Empirical evidence from Rammer et al. (2021) shows that in
Germany, large firms (with at least 1000 employees) are nearly ten times
more likely to adopt AI compared to small businesses (5 to 9 employees).
Furthermore, Al adoption is also uneven across sectors, with the latest
Eurostat ICT business survey indicating higher AI adoption rates in ICT
services and professional business activities. To capture these structural
differences, we consider the size of the manufacturing sector, the share
of knowledge-intensive services and the share of firms with >50 em-
ployees. Finally, we also include regional levels of gross fixed capital
formation, R&D investment and labour productivity, as these factors are
critical for understanding the capacity of regions to adopt and benefit
from new technologies, thereby influencing the employment impact of
AL All variables used in the empirical analysis and their sources are
listed in Table A2 in Appendix.

4.2. Descriptive evidence

In order to get a first impression of the Al exposure index, we list the
ten ISCO 3-digit occupations with the highest (Table 1) and the lowest
scores (Table 2). The most striking feature of the top ten list is the
dominance of high-skilled workers, predominantly stemming from the

Table 1
Top 10 most Al exposed occupations.

Ranking ISCO 3-digit ISCO 3-digit label

1 212 Mathematicians, Actuaries and Statisticians
2 241 Finance Professionals

3 261 Legal Professionals

4 242 Administration Professionals

5 431 Numerical Clerks

6 231 University and Higher Education Teachers

7 411 General Office Clerks

8 122 Sales, Marketing and Development Managers
9 251 Software and Applications Developers and Analysts
10 233 Secondary Education Teachers

Source: Authors’ elaboration based on Felten et al. (2021).
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Table 2
Bottom 10 least exposed occupations.

Ranking  ISCO 3- ISCO 3-digit label
digit

126 931 Mining and Construction Labourers

125 631 Subsistence Crop Farmers

124 912 Vehicle, Window, Laundry and Other Hand Cleaning
Workers

123 911 Domestic, Hotel and Office Cleaners and Helpers

122 713 Painters, Building Structure Cleaners and Related Trades
Workers

121 634 Subsistence Fishers, Hunters, Trappers and Gatherers

120 932 Manufacturing Labourers

119 921 Agricultural, Forestry and Fishery Labourers

118 633 Subsistence Mixed Crop and Livestock Farmers

117 712 Building Finishers and Related Trades Workers

Source: Authors’ elaboration based on Felten et al. (2021).

group of professionals (ISCO major group 2). The relatively high AI
exposure of high-skilled workers is also in line with the wide-spread
perception that labour market effects of digitalisation — or industry 4.0
— will affect not only, and maybe even not most strongly, blue-collar
workers, as was the case with automation (Cirillo et al., 2021). In this
context, it is noteworthy that the high score of professionals does not
necessarily imply that these occupations will be substituted by Al
technologies. Rather, they can also score high if they are complementary
to Al, or as Felten et al. (2021) point out, the methodology for calcu-
lating the AI index is agnostic as to whether Al substitutes or comple-
ments occupations (respectively the abilities needed in occupations).
This characteristic also explains why, along with various professionals,
there are also some medium-skilled occupations present in the list of
top-ranking occupations, such as numerical or general office clerks. In
other words, the rationale of Al-exposure index is partly different from
the one characterising other well-known occupation-based indices, such
as the routine-task intensity (RTI) index (Autor et al., 2003) or the off-
shoreability index (Acemoglu and Autor, 2011). The latter includes a
clear task-related occupational hierarchy concerning replacement risks
vis-a-vis complementarity (i.e. occupations characterised by a relatively
larger share of routine tasks are considered more at risk of
technology-driven substitution), while no such hypotheses are made to
build the AIOE.

At the other end of the spectrum (Table 2), we find mostly low-skilled
occupations, in particular elementary ones. Common traits include the
relatively lower technological intensity of their tasks, which are mostly
manual and physical but not necessarily repetitive. Several of these
occupations have little or no relevance anymore in most EU member
states, which is particularly true for subsistence farmers or subsistence
fishers and hunters.

Looking at the distribution of the Al exposure across European re-
gions in Fig. 2, it is not surprising to find high Al exposure in many high-
income regions, including regions where capital cities are located.
Paradigmatic examples are: Ile de France (Paris region), Vienna, Berlin,
Warsaw metropolitan area, Prague and many more. In other cases,
larger areas of the country are identified as having high Al exposure,
such as North Holland, South Holland and the Utrecht region in the
Netherlands or Southern Sweden and Lower Bavaria in Germany. All
these regions, however, are also high-income regions, both in an EU-
wide comparison and a national comparison. In contrast, in the South-
ern periphery (Spain, Italy) and the Eastern periphery (Romania,
Bulgaria) there are numerous regions with very low levels of Al expo-
sure. These patterns coincide well with other measures for implicit
technological capabilities across Europe, such as, for example, func-
tional specialisation patterns (Kordalska et al., 2022).

5. Cluster analysis and employment patterns: results

This section presents the findings from our cluster analysis, which
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highlights significant regional differences in Al ‘readiness’, measured by
combining Al exposure, sectoral composition, investments, productivity
and skills.'* We detail each cluster below, focusing on the key variables
that differentiate them and their implications for employment dynamics.

Before conducting the cluster analysis, we examined correlations
among the indicators (Fig. 3). Positive correlations between Al expo-
sure, R&D investment, university education and the share of knowledge-
intensive services (KIS) suggest that regions with higher innovation
capacity and human capital are more likely to adopt Al technologies.
Conversely, the negative correlation between Al exposure and
manufacturing share (—0.28) does not imply that AI is absent from
manufacturing. Instead, it reflects Al indicator’s emphasis on cognitive
tasks, while overlooking interactions between AI and robotics in in-
dustrial settings. This is further supported by the weak correlation with
robot density (0.17)—a widely-used measure for studying automation’s
employment effects (Graetz and Michaels, 2018). Together, these find-
ings suggest that AI exposure and robot adoption represent different
facets of technological progress: Al exposure aligns closely with digi-
talisation and the ‘fourth industrial revolution’ (Industry 4.0), while
robotics remains more connected to traditional automation associated
with the ‘third industrial revolution’ (Industry 3.0).

To cluster regions, we first applied a hierarchical Ward’s linkage
method to standardised data, determining the optimal number of clus-
ters, and then used a non-hierarchical k-means analysis to fine-tune the
grouping. The optimal number of clusters was found to be four,'® based
on the Calinski-Harabasz pseudo-F test. These clusters, mapped in Fig. 4,
are labelled as follows: high-tech service and capital centres, advanced
manufacturing core, southern and eastern periphery.'® Table 3 provides key
statistics for each cluster, offering a comparative overview of their
distinct characteristics.

The first cluster, high-tech service and capital centres, is dominated by
capital city regions and economically advanced areas such as Vienna,
Brussels, Berlin, Madrid, ile-de-France, Helsinki, Lazio, Prague and
Bratislava. Characterised by high AI exposure, a concentration of
knowledge-intensive services (KIS), high levels of university graduates
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Fig. 3. Correlation matrix.
Source: Authors’ elaboration, Note: All variables refer to 2018; KIS refers to
knowledge-intensive services.

14 We thank the Editor for suggesting such analytical development. All the
usual disclaimers apply.

15 All four multivariate (MANOVA) tests reject the null hypothesis, indicating
a significant difference between the 9-dimensional mean vectors across the four
clusters.

16 The full list of regions by cluster is provided in Table A3 in the Appendix.
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and substantial R&D investment, these regions are administrative,
financial and innovation hubs. Given these favourable ‘conditions’, they
are likely to experience positive employment outcomes if Al comple-
ments high-skilled labour in sectors such as ICT, finance and profes-
sional services. Al adoption in these regions is expected to enhance
productivity while potentially creating new job opportunities, rein-
forcing their status as innovation-driven economic engines within their
respective countries. Their strong absorptive capacity—rooted in robust
technological capabilities and human capital—position them well to
harness Al technologies (Boschma, 2017; Xiao and Boschma, 2023). In
these regions, Al is likely to complement high-skilled labour, particu-
larly in sectors like ICT, finance and professional services.

The second cluster, advanced manufacturing core, primarily consists of
German regions but also includes other key industrial areas in Austria,
Belgium, France, Italy and Spain (these results qualify the evidence
provided by Stehrer and Stollinger, 2015 analysing the German
manufacturing core). These regions, such as Baden-Wiirttemberg (Ger-
many), Piedmont (Italy), Navarra (Spain), Alsace (France) and Styria
(Austria), maintain strong industrial production bases, particularly in
the automotive sector. This sectoral structure helps explain their mod-
erate Al exposure but relatively high robot density, reflecting a focus on
traditional forms of automation. The presence of large firms, robust R&D
investment and highly skilled workforce endow these regions with the
absorptive capacity needed to integrate Al into existing capital-intensive
production systems. Although their Al exposure is not as high as in
service-oriented regions, their high-tech specialisation and high robot
density signal strong potential for Al integration and productivity gains
within manufacturing.

The third cluster, southern periphery, includes regions from southern
Europe, such as the Greek islands, southern Italy and Andalusia, along
with some outliers. While some regions from Austria and Germany also
appear in this cluster, the label reflects the structural challenges com-
mon in southern Europe: weaker innovation ecosystems, low produc-
tivity, limited investment and lower skill levels (Celi et al., 2018). These
factors constrain these regions’ ability to reap benefits from the ongoing
digital transition. Their lower Al exposure is unsurprising, as local
economies still heavily rely on traditional sectors like tourism (e.g., the
Greek islands) and agriculture (e.g., Andalusia, Northern Greece and
southern Italy). These structural weaknesses, including low absorptive
capacity, significantly limit their ability to adopt and take advantage of
Al technologies.

The fourth cluster, eastern periphery, consists of regions from Eastern
Europe, including Czechia, Poland, Hungary, Romania, Bulgaria and the
Baltics. These regions share a strong industrial base but exhibit lower
levels of Al exposure, robot adoption and R&D investment compared to
the advanced manufacturing core. Despite their industrial strength,
limited innovation capacity and relatively low levels of KIS and work-
force skills restrict their ability to adopt advanced technologies. The lack
of absorptive capacity—especially in terms of R&D and human capi-
tal—poses a challenge to fully exploit transformation potential of Al
technologies.

Overall, each cluster presents distinct challenges and opportunities.
In what follows, we discuss how these differences could shape the
impact of Al technologies in the future.

We begin by reporting the employment growth between 2011 and
2018 by cluster (Table 4). Interestingly, relatively higher employment
growth is detected in regions where manufacturing plays an important
role. The eastern periphery shows the highest employment growth,
suggesting some convergence with more advanced regions, although Al
is unlikely to be the driver of these changes. A slightly lower employ-
ment growth is detected in the ‘high-tech service regions & capital
centres’ cluster while the southern periphery turns out to be the less
dynamic. If anything, such patterns suggest that, so far, employment
patterns are mostly driven by well-known structural drivers (i.e., share
of manufacturing industries likely to capture most of the external de-
mand and FDI flows) shaping growth and industrial restructuring in
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Fig. 4. Regional clusters.
Source: Authors’ elaboration
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Table 3
Descriptives by cluster.
High-tech Advanced Southern Eastern
service regions  manufacturing periphery periphery
& capital core
centers
AIOE 0,944 0,196 -0,619 —0,660
Robot density 5534 15,271 4202 3345
NSW 0,304 0,369 0,322 0,157
KIS 0,544 0,419 0,466 0,371
Manufacturing 0,130 0,242 0,136 0,270
University 0,414 0,286 0,294 0,268
graduates
Large firms 0,452 0,519 0,298 0,413
Investments 20,956,683 16,547,184 6321,443 3823,107
GVA/EMP 83,739 73,509 79,683 23,665
R&D 2188 2680 0,936 0,886

Source: Authors’ elaboration; Notes: NSW stands for non-standard work.

Table 4
Employment growth by cluster.
High-tech Advanced Southern Eastern
service manufacturing periphery periphery
regions & core
capital
centers
Employment 6031 9363 4830 14,193
growth
2011-2018

Source: Authors’ elaboration.
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Europe over the last decades (for a thorough discussion, see Guarascio
et al., 2024; Celi et al., 2018). Moreover, the positive relationship be-
tween Al exposure and employment dynamics documented, among the
others, by Albanesi et al. (2023) and Guarascio and Reljic (2024) be-
comes more nuanced as far as regional and structural heterogeneities are
explicitly considered.

To push the analysis further, the scatterplots in Fig. 5 illustrate the
relationship between AI exposure and employment growth across the
four clusters. By inspecting such heterogeneous patterns, it is possible to
speculate around possible future scenarios for AI's impact on employ-
ment in different regions.

In high-tech services and capital centres, the positive association be-
tween Al exposure and employment growth reflects a broader process,
whereby strong innovation systems create an environment conducive to
adopting new technologies. High Al in these regions, coupled with a
virtuous circle linking R&D, skills and economic activity, forms a rein-
forcing mechanism that is likely to drive productivity and employment
growth (Pianta and Reljic, 2022). Rather than being disruptive, Al in
these regions is expected to complement high-skilled labour, enhancing
existing competencies and expanding job opportunities within
knowledge-intensive industries such as ICT, finance and professional
services.

In the advanced manufacturing core, the positive association between
Al exposure and employment growth should be interpreted with
caution. Here, Al plays a secondary role to more traditional forms of
automation, particularly industrial robots, which remain the backbone
of production systems. AI’s contribution, by making robots more flex-
ible, autonomous and intelligent, is likely to drive process innovation
without fundamentally altering their underlying structures. As a result,
Al in this context is less about disruption—displacing labour en masse-
—and more about enhancing the efficiency of established processes.
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Fig. 5. Employment growth and AI exposure.
Source: Authors’ elaboration

Moreover, in this area employment growth has been mostly driven by
the remarkable export performance of (to a significant extent German-
based) exporting industries. Yet, as the global landscape is rapidly
changing with a potential downsizing of export-led growth opportu-
nities, the employment dynamics of this cluster could also change
(Guarascio et al., 2024). What could be the role of Al in such a changing
scenario is still hard to say.

In the southern periphery, the relatively flat line suggests that Al has
had—and is likely to continue having—a limited impact on labour
market dynamics. These regions are characterised by low levels of Al
exposure and a smaller share of high-tech services and manufacturing
industries, factors that are likely to impede the adoption of Al technol-
ogies. Moreover, the absence of large firms and low absorptive capacity
further constraint their potential for structural upgrading. This places
the southern periphery on a ‘low-road’ trajectory, leaving little room for
Al to spur significant changes in terms of productivity and employment.

In the eastern periphery, although these regions experienced the
highest employment growth between 2011 and 2018, low Al exposure
suggests that this growth was driven by factors other than Al (see the
discussion above). Minimal AI adoption, low R&D investment and
limited skills indicate that these employment gains are largely the result
of labour-intensive manufacturing rather than technological trans-
formation. Looking forward, AI adoption could lead to labour
displacement rather than job creation, given these regions’ specialisa-
tion in labour-intensive stages of production, such as fabrication
(Kordalska et al., 2022). To benefit from Al, these regions would require
structural upgrading toward more advanced manufacturing activities
and, potentially, increasing the share of high-tech services Without this
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shift, the potential for Al to contribute to productivity and employment
growth remains limited.

This analysis reveals not only the uneven exposure to Al technologies
across regional clusters but also the asymmetric distribution of capa-
bilities required to fully harness AI’s transformative potential. The sce-
narios illustrated here reflect how technological, institutional and
economic factors interact to determine which regions will be the early
adopters-and beneficiaries- and which are likely to lag behind.

The heterogeneity across clusters underscores the path-dependent
and context-specific nature of AI’s impact on employment. In high-
tech services and capital regions, accumulated technological capabil-
ities are likely to enable Al to complement existing economic activities,
potentially leading to positive employment outcomes. By contrast, the
southern and eastern peripheries face significant structural bar-
riers—including sectoral specialisation, low R&D investment, limited
skills—which hinder both their ability to adopt AI technologies and
ultimately benefit from them.

6. Conclusion and policy implications

This paper adds to the nascent literature on the exposure to Al
technologies and their expected employment implications. We focus on
Europe, which is a relevant case in point for at least three reasons. First,
promoting the adoption of digital technologies is now at the centre of the
EU industrial policy strategy, given the widely acknowledged techno-
logical gap vis-a-vis the US and China (Guarascio et al., 2024). Second,
the available empirical evidence on Al is to a significant extent US
centric while less is known about exposure, adoption and impact in



D. Guarascio et al.

Europe. This lag is primarily due to better data availability for the US
economy, where researchers can draw on publicly available data on
occupational profiles as well as employment and wage data at a very
granular level. Third, Europe is characterised by significant structural
and territorial heterogeneities which may affect in a fundamental way
the economic and employment impact of Al.

In this context, country and region-specific empirical analyses are
indispensable, as structural heterogeneities may lead to completely
different outcomes when it comes to the diffusion of potentially
disruptive technologies such as Al Our analysis reveals significant
regional differences in Al ‘readiness’ across Europe, driven by key fac-
tors such as accumulated technological capabilities, R&D investment,
sectoral composition (e.g., a large share of knowledge-intensive ser-
vices) and the availability of a highly skilled workforce. This confirms
the importance of considering the differences between national and
local innovation systems when assessing the impact of specific tech-
nologies. Regions where high-tech service centres and advanced
manufacturing hubs are located, seem to have the most favourable
conditions for adopting Al and, potentially, seizing the associated eco-
nomic and employment opportunities. In contrast, regions in the
southern and eastern peripheries —characterised by lower R&D in-
vestment, weaker innovation ecosystems and a reliance on labour-
intensive industries—lack these key enablers, limiting the opportu-
nities for Al adoption.

This is related to a more general aspect of technological change,
Kranzberg’s Law, which holds that, “Technology is neither good nor bad;
nor is it neutral” (Kranzberg, 1986, p. 545). The point the technological
historian put forward in his writings is that the consequences of tech-
nology depend not only on its technical features but on the societal and
temporal context. Hence, chances are that there is no single answer to
the question of what AI means for jobs that researchers are so eager to
answer. Rather, answers can only be partial, specific to the locations and
time periods analysed.

This means that there is no universal answer to the question if — and
in the affirmative ~how AI will affect labour markets in general. We do
not know whether the ‘future of work’ will resemble the rosy world
envisaged by Keynes (2010[1931]) in his essay on the Economic Possi-
bilities for Our Grandchildren, in which new technologies — in our context
Al — lead to such massive increases in productivity, essentially freeing
society from scarcities and allowing people to indulge in science, arts
and philosophy. We would see this as the positive or ‘Star Trek’ scenario.
Things could play out very differently, though. As outlined by Leontief
(1983), humans may face the same destiny as horses in their function as
‘workforce’, meaning they will just not be needed anymore, apart for
some curious nostalgic purposes such as tourist entertainment showing
the ways of the past, sports, or the circus. This ‘Death of the Workhorse’
scenario in which men lose the race against machines has become
popular among economists with many facets of it. This prevalence of the
pessimistic view is the result of two characteristics and their interaction:
one related to Al the other to the current economic paradigm. Leontief’s
point is that the horse as a production input became obsolete because the
steam engine outcompeted the workhorse in its core competencies —
physical strength and stamina. Likewise, Al in many work contexts now
outcompetes humans in cognitive tasks and also seriously challenges
them in (simple) social interaction. This feeds the ‘this time is different’
narrative which often comes with a Luddite undertone but in principle
could be counteracted by the fact that, unlike the horse, humans
themselves can decide whether, to what extent and for which purposes
they want to introduce the new technologies now available. However,
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this safety valve for meaningful human labour risks being undermined
by the current economic paradigm, which induces firms to use Al not
primarily to find valuable solutions to societal challenges but to maxi-
mise shareholder value. The latter typically involves the replacement of
labour with Al algorithms (see Acemoglu and Johnson, 2023)" - typi-
cally in combination with robots and other machines.

Our findings suggest that regions with a high robot density and AI
exposure—particularly in capital-intensive production systems—may
end up losing jobs in some cases. However, we argue that, in the Euro-
pean advanced manufacturing core, Al is more likely to enhance process
innovation rather than displace labour en masse. In contrast, in the
eastern periphery, given its specialisation in labour-intensive
manufacturing industries, Al-enhanced automation could potentially
lead to labour displacement. This underlines the fact that labour market
effects emanating from Al may be very heterogenous across EU regions.

Our results must be interpreted with great care for a number of
reasons. First, a more robust mapping of Al diffusion would have
required data on actual adoption and information on specific Al tech-
nologies/applications, as these may lead to rather heterogeneous out-
comes. Yet, so far, the variables capturing the potential diffusion of Al
technologies are, de facto, the best tool to sketch scenarios about their
economic and employment implications. In this regard, firm-level data
on Al adoption would be invaluable for updating and enriching existing
evidence. Second, an important caveat of this study is that by focusing
on employment, only one aspect of labour markets is captured, while
other relevant dimensions of work are neglected, in particular working
conditions. It could very well be that while new jobs are created, these
jobs are of a poor quality, meaning they are low in terms of skill re-
quirements but above all they lack a sense of meaning. The working
conditions related to many of these newly created jobs could be
described as underpaid, isolated, where workers are stuck at home in
front of their computers with work and leisure time getting increasingly
blurred. While the results of this first regional analysis have little to say
in this regard, the fact that AI exposure is skewed towards high-skilled
jobs and that other studies (Albanesi, et al., 2023; Felten et al., 2019)
found that Al leads to employment growth primarily for high-skilled
labour may question this prediction. At the same time, it cannot be
ruled out that even jobs of high-skilled workers are getting increasingly
monotonous and meaningless.

In addition to the omission of job quality, there are a number of
important methodological limitations which have to be kept mind.
Firstly, quantitative work of the kind undertaken here is bound to make
inferences from the past onto the future. While this is legitimate, the
predictions emerging from such an undertaking may be less accurate
and reliable when they deal with a potentially disruptive technology, i.
e., AL Secondly, the diffusion of Al in the economy may still be too
limited so that its macroeconomic consequences (such as employment
growth) are hard to identify in the data. Furthermore, there are insti-
tutional factors, notably the existence of labour unions, which are likely
to influence labour market outcomes. More specifically, labour unions
may to some extent be able to soften Al-related labour-saving. As such
this constitutes an interesting avenue for further research, as does a
more differentiated analyses of employment effects by skill groups.
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APPENDIX
Table Al
Al indicators: findings and limitations.
Data Source Findings Limitations

Al-related Online Job
Vacancies (e.g., Burning
Glass)

Patents

Al Patents and O*NET
Tasks

Occupation-based
Indicators

Acemoglu et al. (2022) found no significant effects of Al at the occupation
and industry level in the US

Damioli et al. (2023) studied 3500 leading companies with Al-related
patents and found a moderate positive employment impact of Al

Webb (2020) used verb-noun pairs in AI patent titles and O*NET tasks to
measure automation. Al more likely to affect skilled and older workers
compared to previous innovation waves (ICT and robots)

Felten et al. (2018, 2021) found positive effects on wages but no impact on
employment in the US; Gmyrek et al. (2023), focusing on GPTs, reveal that
24 % of clerical tasks are highly exposed

Online job vacancies are not representative of overall labour demand;
occupation- industry- and country-biased

Not an indicator of adoption, but innovation (partial, as not all
innovations are patented); sample includes only patenting companies,
silent on net effects (i.e., business stealing)

Focuses on exposure rather than adoption; patent titles may not fully
describe the underlying technology; selection of keywords is arbitrary

Focuses on exposure rather than adoption; silent on industry and firm-
level technological differences

Source: Authors’ elaboration.

Table A2

List of variables.

Variable

Definition

Source

Al exposure

Standardised with 0 mean and a unit standard deviation

Felten et al. (2021)

Robot density Robot stock in manufacturing industries per 1000 employees IFR
Total employment Annual employment growth EU LFS
University degree Share of employees with tertiary education EU LFS
KIS Share of employees in knowledge-intensive services EU LFS
Non-standard work Share of employees without permanent full-time contract EU LFS
Manufacturing Share of manufacturing employment EU LFS
Large firms Share of firms with 50+ employees EU LFS
R&D investments R&D as percentage of GDP Eurostat
Investment Gross fixed capital formation ARDECO
Labour productivity Gross value added per employee ARDECO

Source: Authors’ elaboration.

Table A3
List of regions by cluster.

Cluster

Regions

High-tech service regions & capital

centers

Advanced manufacturing core

Southern periphery

Eastern manufacturing periphery

AT12, AT13, AT21, BE10, BE21, BE23, BE24, BE25, BE31, BE32, BE33, BE34, BE35, CZ01, DE30, DE40-42, DE60, DEFO, DK01-05, ES21,

ES30, ES51, FI18-1C, FI19, FI1A-1D, FR10, FRBO, FRC1, FRD2, FRE1, FRE2, FRF3, FRGO, FRHO, FRI1, FRI2, FRI3, FRJ1, FRJ2, FRK1, FRK2,
FRLO, GR30, HU10-12, IE01-06, ITI4, NLOO, PL12-92, PT17, RO32, SE11, SE12, SE21, SE22, SE23, SE31, SE32, SE33, SKO1

AT22, AT31, AT34, BE22, DE11, DE12, DE13, DE14, DE21, DE22, DE23, DE24, DE25, DE26, DE27, DES0, DE71, DE72, DE73, DE91, DE92,
DE93, DE94, DEA1, DEA2, DEA3, DEA4, DEAS5, DEBO-B3, DECO, DED2, DED4, DED5, DEEO-E3, DEGO, ES22, FRC2, FRF1, ITC1, ITC4, ITH3,

ITH5

AT11, AT32, AT33, DE80, ES11, ES12, ES13, ES23, ES24, ES41, ES42, ES43, ES52, ES53, ES61, ES62, ES63, ES70, FRD1, FRF2, GR42, GR43,
GR51, GR52, GR53, GR54, GR61, GR63, GR64, GR65, ITC2, ITC3, ITF1, ITF2, ITF3, ITF4, ITFS, ITF6, ITG1, ITG2, ITH1, ITH2, ITH4, ITI1, ITI2,

ITI3, PT15, PT18, PT20, PT30

BG31-33, BG41, BG42-34, CZ02, CZ03, CZ04, CZ05, CZ06, CZ07, CZ08, EE00, HU21, HU22, HU23, HU31, HU32, HU33, LT00-02, LV00,

PL21, PL22, PL41, PL42, PL43, PL51, PL52, PL61, PL62, PL63, PL71, PL72, PL81, PL82, PL84, PT11, PT16, RO11, RO12, RO21, RO22, RO31,

RO41, RO42, SK02, SK03, SK04

Source: Authors’ elaboration.

Data availability

Data will be made available on request.
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