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A B S T R A C T

This study explores exposure to artificial intelligence (AI) technologies and employment patterns in Europe. First, 
we provide a thorough mapping of European regions focusing on the structural factors—such as sectoral 
specialisation, R&D capacity, productivity and workforce skills—that may shape diffusion as well as economic 
and employment effects of AI. To capture these differences, we conduct a cluster analysis which group EU regions 
in four distinct clusters: high-tech service and capital centres, advanced manufacturing core, southern and 
eastern periphery. We then discuss potential employment implications of AI in these regions, arguing that while 
regions with strong innovation systems may experience employment gains as AI complements existing capa
bilities and production systems, others are likely to face structural barriers that could eventually exacerbate 
regional disparities in the EU, with peripheral areas losing further ground.

1. Introduction

The rapid advancement of artificial intelligence (AI) technologies has 
sparked a lively debate regarding its potential impact on economies and, 
in particular, on labour markets. This debate is not new: the ‘man vs. 
machine’ race has been a recurring theme since the times of Smith, 
Ricardo and Marx. Concerns over a new wave of AI-driven technological 
unemployment are bringing back to the fore the same fears that sur
rounded previous waves of automation and digitalisation (Frank et al., 
2019; Autor, 2022).1

When it comes to the disruptive effects of AI, there are at least three 
discontinuities that are worth mentioning. First, AI technologies are, for 
the first time, putting man and machine in competition over tasks so far 
unattainable for non-human devices, particularly in the service sector. 
Generative AIs —e.g., OpenAI’s Chat-GPT or Google’s Bard— are 
already demonstrating their potential to replicate and, in some cases, 
outperform humans in carrying out activities requiring complex 
reasoning and judgements, such as legal or medical advice (Felten et al., 
2023). For instance, the interpretation of x-ray images and other med
ical imaging diagnostics, typically a non-routine cognitive task requiring 
a lot of knowledge and experience, is now within AI’s scope. In other 
words, workers now face competition in their core competencies, which 
explains the ‘this time could be different’ attitude with regards to the 

labour market effects of technology. Second, AI is expected to magnify 
the potential of key automation technologies (e.g., robots), paving the 
way for job disruption also in manufacturing. Third, as AI-related 
technologies, knowledge and capabilities are not homogeneously 
distributed, this technological wave may exacerbate regional in
equalities both across and within countries, with peripheral areas losing 
further ground as new forms of techno-economic dependency begin to 
emerge (Korinek and Stiglitz, 2021). On the other hand, AI promises to 
complement and assist workers in carrying out a number of tasks, in 
services and manufacturing alike (Gmyrek et al., 2023). Increasing 
productivity may spur labour demand, potentially compensating 
AI-induced job disruptions, should the latter take place. By the same 
token, organisational efficiency–including managerial tasks aimed at 
monitoring, coordinating and directing workers–will take a leap for
ward, resulting in potential labour-saving effects as well as changes in 
the composition of occupational profiles and their relative position 
within organisations (Chowdhury et al., 2023). New sectors and market 
niches are also about to emerge. Thus, it is hard to predict how many 
jobs this will create, as a significant share of disruptive AI applications 
are in their initial stage of development (Mondolo, 2022).

In this context, empirical research is struggling to provide policy
makers with robust evidence that could prove useful in tailoring AI- 
related policies and regulations (Autor, 2022). As the diffusion of AI 
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1 The ‘man vs machine’ race is already found in the writings of Keynes on the future of work (Keynes, 2010[1931]).
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gains momentum and its potential applications flourish across sectors (e. 
g., education, finance, legal counselling, insurance), attempts to assess 
its employment impact multiply (among others, see Brynjolfsson et al., 
2018; Felten et al., 2021; Webb, 2020; Acemoglu et al., 2022; Albanesi 
et al., 2023).2 Most existing research has focused on the US, largely 
converging towards a positive relationship between AI and employment, 
particularly concerning high-skill occupations. However, given that 
most of the available evidence relies on ‘potential’ measures of AI 
exposure, different outcomes may arise once data on actual adoption in 
sectors and firms are available, especially due to the early stage of the AI 
diffusion process.

An important role could also be played by heterogeneously distrib
uted supply, demand and structural factors that are likely to influence 
the AI-employment nexus (Reljic et al., 2021; Xiao and Boschma, 2023). 
Countries and regions characterised by a larger share of knowledge 
intensive services are those where deployment of new technologies 
could be most rapid, especially with regard to AI applications capable of 
complementing human tasks. In contrast, where medium-technology 
sectors prevail and firms are predominantly adopters of technologies 
provided by external suppliers, labour substitution could prevail 
(Calvino and Fontanelli, 2023). Furthermore, the presence of labour 
market institutions aimed at protecting workers against dismissal could 
slow down the eventual process of AI-driven destruction of occupations 
(Pianta and Reljic, 2022). These are all elements which may ultimately 
contribute to determining the net (direct and indirect) employment 
impact of AI, as well as its distribution in space and time.

Given its complex multi-purpose nature, measuring AI and, even 
more so, the impact it may have on employment is a challenging 
endeavour. Despite the rapid diffusion of AI technologies across Europe, 
studies analysing their employment effects—particularly in light of 
significant structural heterogeneity across regions—remain limited. To 
address this research gap, we first conduct a cluster analysis to group 
European regions according to their readiness to adopt (and benefit) 
from AI technologies. This analysis incorporates multiple dimensions, 
including AI exposure, robot adoption, R&D investment, sectoral 
composition, labour productivity and workforce skills. Second, building 
on the cluster analysis results, we discuss potential scenarios of how AI 
could affect employment dynamics within these regional clusters.

Our analysis reveals not only the uneven exposure to AI technologies 
across regions but also the asymmetric distribution of capabilities and 
absorptive capacity needed to fully exploit AI’s potential. We argue that 
the interplay of structural factors—sectoral specialisation, skills and 
innovation capacity—will likely determine whether regions emerge as 
early adopters (and developers) of AI, with varying impacts on 
employment.

Our man results show that, in high-tech service and capital regions 
(e.g., Berlin, Île-de-France, Prague, Vienna), preexisting local capabil
ities are likely to facilitate AI diffusion and enable AI technologies to 
complement existing knowledge-intensive economic activities, poten
tially resulting in positive employment outcomes. Conversely, regions in 
southern Europe (e.g., the Greek islands, southern Italy, Andalusia) 
seem to be trapped in a vicious circle of low growth, weak R&D in
vestment, limited skills and low productivity. Their economic structur
e—still heavily reliant on agriculture and tourism—is likely to hinder 
the initial adoption of AI and limit their ability to capitalise on its 
benefits later, potentially exacerbating existing economic disparities 
within the EU.

The advanced manufacturing core regions— predominantly located 
in Germany, though there are some notable exceptions, such as Italian 
Piedmont, Spanish Navarra and French Alsace —with their strong in
dustrial base, high robot density, substantial R&D investment and high- 
skilled workforce, are well-positioned to benefit from both diversifying 

into emerging AI-related areas and integrating AI into their existing 
capital-intensive production systems. As AI enhances automation tech
nologies, including robots (Agrawal et al., 2019), these regions are 
poised to seize new opportunities for process automation. However, this 
also brings the risk of AI-driven job displacement, unless efficiency gains 
translate into new employment opportunities. While the final employ
ment outcome remains uncertain, the positive correlation between AI 
exposure and employment growth in these regions provides some 
grounds for optimism.

Meanwhile, eastern European peripheral regions, despite facing 
similar challenges to southern Europe in terms of skills and innovation 
capacity, recorded the highest employment growth during the observed 
period, largely driven by manufacturing. However, their reliance on 
low-skill and labour-intensive activities (such as fabrication) makes 
them more susceptible to the negative employment effects of AI-driven 
automation. Without significant structural upgrading, eastern periph
eral regions are likely to face greater difficulties in integrating AI in ways 
that complement workers, compared to the more advanced 
manufacturing core regions.

This paper is organised as follows. Section 2 provides a review of the 
literature, highlighting key issues and systematising the available 
empirical evidence. Section 3 spells out our main research question, 
while data and descriptive evidence are provided in Section 4. Cluster 
analysis and main results are reported in Section 5, while Section 6
concludes by discussing policy implications, limitations of the analysis 
and avenues for future research.

2. The diffusion of AI and its economic implications: a literature 
review

Stimulated by the proliferation of potentially disruptive applications 
(e.g., autonomous machines, next-gen recommender systems, high- 
performance image recognition technologies), the literature analysing 
the diffusion of AI and its economic implications is rapidly growing. In 
what follows, we provide a brief review of the extant literature focusing 
on two major streams. The first group of contributions analyses AI’s 
diffusion patterns, highlighting their asymmetric nature and identifying 
the structural elements (e.g., technological capabilities, infrastructures, 
institutions) shaping diffusion at the sectoral and territorial level. The 
second group includes contributions that, building on different in
dicators to capture relative exposure to and/or actual use of such tech
nologies (for a review, see Guarascio and Reljic, 2024), investigate the 
employment impact of AI. Indeed, these two literature streams are 
conceptually intertwined, although rather separated within the broad 
corpus of contributions focusing on AI. In fact, an appropriate assess
ment of the economic and employment implications of AI cannot 
disregard the structural elements that may favour con
vergence/divergence in the diffusion process, including the asymmetric 
distribution of AI-related gains/costs.

2.1. The geography of AI: structural drivers and diffusion patterns

The diffusion of new technologies is never homogeneous across 
sectors, regions and countries. Rather, these are more likely to emerge 
and concentrate in areas where certain enabling conditions are present, 
highlighting the local and path-dependent nature of technological 
diffusion (Boschma, 2017). The literature identified a range of factors 
explaining why the adoption of new technologies emerge in certain 
areas rather than others (Rigby, 2015). Key elements include absorptive 
capacity, cognitive proximity, relative strength of the national and 
regional systems of innovation (Cohen and Levinthal, 1990). Concerning 
path-dependency, what matters is the positive correlation between size 
and quality of technological capabilities, on the one hand, and the ca
pacity to capture new technological opportunities, on the other. Where 
capabilities are large and rich absorptive capacity is expected to in
crease, giving rise to reinforcement mechanisms which may lead to 

2 For an earlier review of the literature on the AI-employment nexus, see 
Barbieri et al. (2020) and Mondolo (2022).
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divergence between the most dynamic sectors/areas and those lagging 
behind. Relatedly, many authors underlined the correlation between 
macroeconomic (i.e., intensity and composition of demand flows) and 
structural conditions (e.g., skills, size and quality of relevant in
frastructures) that heterogeneously characterise sectors and geograph
ical areas and their propensity to adopt and develop innovations 
(Bogliacino and Pianta, 2010; Dosi et al., 2021; Guarascio et al., 2017; 
Pianta and Reljic, 2022; Reljic et al., 2021). Countries, industries and 
regions facing relatively more intense demand flows and endowed with 
the appropriate skills and infrastructures are expected to be faster in 
developing, adopting as well as in seizing the economic opportunities 
associated to new technologies. Technological capabilities and diffusion 
processes are also related to the hierarchical structure of Global Value 
Chains (GVCs).3 Far from being evenly distributed, strategic functions 
related to, among other things, development, control and management 
of innovations (e.g., R&D, product design), are concentrated near the 
headquarters of the companies dominating GVCs. This may further 
contribute to the uneven distribution of technological capabilities and, 
related to that, of the value (extra profits, rents) that can be extracted 
from innovations. Sectoral specialisation matters too. Automation 
technologies (e.g., robots) tend to be concentrated in areas where 
manufacturing activities prevail. On the contrary, IT and digitalisation 
technologies are to a significant extent concentrated where services, 
and, particularly, ‘knowledge-intensive’ ones (Evangelista et al., 2013), 
are prevalent (Bontadini et al., 2022).

When it comes to the diffusion of AI technologies, the available ev
idence displays a rather polarised landscape. Focusing on AI-related 
patents, Fanti et al. (2022) show how the diffusion of this set of tech
nologies (e.g., machine learning, neural networks, sound and image 
recognition systems) is reinforcing the overall trend towards market 
concentration traditionally characterising the ICT techno-economic 
paradigm (Dosi and Virgillito 2019). Building on their strong capabil
ities and acquiring most of the more promising AI start-ups, few trans
national corporations (i.e., Big-Tech) are consolidating their dominant 
positions also in this ‘new’ technological domain/market segment (for a 
discussion on the long-term evolution of the AI technological trajectory 
and related discontinuities, see Fanti et al. 2022). Along these lines, 
Maslej et al. (2024) have recently provided a more in-depth and updated 
analysis of the global distribution of AI-related patents and R&D activ
ities. Regarding patents, the authors document significant polarisation 
both geographically and at the corporate level. Of all AI patents granted 
between 2010 and 2022, approximately 62 % originated from China, 20 
% from the US, and only 3 % from applications submitted by the EU and 
the UK. A similar pattern is detected in what Maslej et al. (2024) define 
as ‘notable machine learning models’ and the ‘foundational models’ that 
are behind generative AIs (e.g., Bard, ChatGPT, Gemini). In both cases, 
the US and China hold the lion’s share: between 2003 and 2023, around 
the 76 % of these models have been developed in the two countries (61 
% in the US and 15 % in China) with few followers (France, Germany, 
Canada) lagging far behind. As for corporations owning the leading 
foundational models, the usual suspects come to the fore: Alphabet, 
Meta, Microsoft and OpenAI dominate the ranking.

These trends are confirmed when looking at investments in AI- 
related ventures (about 65 % of total investments are located in the 
US) while around two-thirds of newly funded AI companies were 
established in the US and China (the data refer to 2023, for more details, 
see Maslej et al., 2024). Distinguishing between different technological 
trajectories of AI patents (short-range, academic, technical, broad view), 
Hötte et al. (2023) highlight, again, that AI inventions are highly 
concentrated within a few firms. Among the top patentees, companies 
such as Amazon, IBM, Intel, Microsoft and Samsung stand out. Indeed, 
although these authors provide further confirmation of the powerful 

position of a few Big Tech companies in the AI technological domain, no 
clear empirical evidence is provided regarding a generalised concen
tration in AI patenting (to conduct their analysis, Hötte et al. (2023)
analyse the evolution of the Herfindal-Hirschman index between 1990 
and 2019). Dibiaggio et al. (2024) provide further evidence regarding 
the geographical polarisation of AI-related technological capabilities. 
Relying on three major patents classifications (International Patent 
Classification, Cooperative Patent Classification and the File Index / File 
forming terms) to analyse EPO PATSTAT data, they confirm the polar
isation documented by previous contributions yet reporting a stronger 
position of China vis-à-vis the US: in absolute terms, China records a 
larger number of AI related patents, while the number of EU27 patents is 
almost a third that of US ones. A rather different picture emerges 
regarding AI-related scientific publications as reported by the Scopus 
database. In this case, the US and the EU27 report the highest number of 
publications, while China ranks third (Dibiaggio et al., 2024).

The asymmetric diffusion of AI technologies, heterogeneous distri
bution of capabilities and structural drivers and resulting polarisation 
dynamics are detected also at the regional level. This is not surprising, 
though, as agglomeration dynamics and innovation patterns are closely 
related to the relative strength of local innovation systems (Balland 
et al., 2015). In this context, Xiao and Boschma (2023) rely on patent 
data to investigate the knowledge production of AI technologies in 233 
European regions observed from 1994 to 2017. Their analysis reveals 
that regions displaying the highest share of AI patents are those char
acterised by a strong pre-existing ICT knowledge base, confirming the 
importance of cumulative and path-dependent dynamics in explaining 
diffusion processes. These findings are in line with previous evidence 
provided by Buarque et al. (2020). Through a similar geographical 
mapping of AI technologies in European regions, these authors show 
that the most successful AI regions are those where AI technologies are 
most embedded in their knowledge space.

In fact, as argued before, the ability to absorb and, even more so, to 
develop digital technologies, including AI, is strongly related to the 
availability of an appropriate skill-base. Regarding AI technologies, 
what matters is the relative endowment of digital skill, particularly the 
most advanced ones. In this respect, Caravella et al. (2023) propose a 
new regional ‘digital skill index’, distinguishing between users, practi
tioners and developers, to explore the diffusion of digital skills in 
Europe. As expected, they document a polarisation dynamic similar to 
the one highlighted by Xiao and Boschma (2023) regarding AI-related 
knowledge. In particular, they report that the factors shaping the dis
tribution of digital skills at the regional level are: i) the concentration of 
large and high-tech/knowledge intensive corporations; ii) the presence 
of a qualified workforce that magnifies complementarity with digital 
technologies; and iii) sustained aggregate demand.

In a nutshell, virtually all the elements (e.g., knowledge base proxied 
by patents and publications, investments, competences, share of high- 
tech-firms, sustained demand flows) that, from a theoretical view
point, are expected to explain the asymmetric and often polarised dis
tribution of frontier technologies emerge as key drivers of diffusion, also 
in the case of AI.

2.2. The AI-employment nexus

Although it is relatively recent, the corpus of empirical literature 
focusing on the AI-employment nexus is large enough to be distin
guished according to the adopted unit of analysis and related approach 
to measure the potential/actual penetration of such technologies.

A significant group of contributions relies on occupation and ability- 
based indicators to assess the relative ‘AI exposure’ (Felten et al., 2018), 
i.e., the likelihood that an occupation will come into contact with, be 
assisted or replaced by AI, given the characteristics of the tasks per
formed and the underlying abilities. In line with the literature studying 
the employment impact of ICTs distinguishing occupations according to 
the degree of ‘routineness’ of their tasks (Autor et al., 2003) or 

3 For a thorough discussion, see Stollinger (2021) and Coveri and Zanfei 
(2023).
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automation probabilities (Frey and Osborne, 2017), this stream of works 
starts by ranking jobs considering the importance and prevalence of 
abilities that occupations ‘share’ with AI (Tolan et al., 2021). Bryn
jolfsson et al. (2018) focus on advancements in machine learning (ML) 
technologies, which are at the basis of virtually all AI applications. 
Relying on the rubric evaluating task potential for ML proposed in 
Brynjolfsson and Mitchell (2017), the authors introduce a task-based 
measure of ‘Suitability for Machine Learning’ (SML) linking it to 18, 
156 tasks included in the O*NET4 database. Their key results are sum
marised as follows: i) most of the occupations included in O*NET display 
at least some SML tasks; ii) only few of them turn out to be fully 
replaceable by AI technologies; and iii) redesign of job task content is 
often required to employ such technologies. Another occupation-based 
measure is proposed by Felten et al. (2018, 2021), who link the ten 
most promising AI applications (e.g., image recognition, language 
modelling, translation, among others) to human abilities included in 
O*NET. Felten et al. (2021)’s AI Occupational Exposure (AIOE) scores 
identify white-collar workers as the most exposed occupational group. 
However, the measure remains silent on the likelihood of AI having a 
complementary or substitutive effect.

The only attempt to apply Felten et al. (2021)’s occupation-based 
methodology to assess the employment impact of AI on the European 
economy is the one by Albanesi et al. (2023) and Guarascio and Reljic 
(2024). Using a crosswalk, analogous to the one upon which our analysis 
is based, to link the O*NET-based AIOE to European 3-digit occupa
tions,5 Albanesi et al. (2023) find that, in Europe, employment shares 
tend to increase in occupations more exposed to AI. The evidence is 
particularly significant for those occupations characterised by a rela
tively higher proportion of younger and skilled workers. Focusing on 16 
European countries over the period 2011- 2019, these authors argue 
that, although country-level heterogeneities do matter, particularly 
concerning differences in terms of pace of technological diffusion, ed
ucation levels, product market regulation and employment protection 
laws, there is no EU country where the share of the most AI-exposed 
occupations tends to decline.

On the other hand, Guarascio and Reljic (2024) report that occupa
tions more exposed to AI technologies display stronger employment 
growth compared to the rest of the workforce. Yet, even in this case, 
heterogeneous patterns are in order. Positive employment outcomes 
tend to be concentrated in Innovation Leaders6 (Belgium, Denmark, 
Finland, the Netherlands and Sweden) and Strong Innovators (Austria, 
Cyprus, France, Germany, Ireland and Luxembourg), while no effects are 
observed in Moderate (Czechia, Estonia, Greece, Hungary, Italy, 
Lithuania, Portugal and Spain) and Emerging Innovators (Croatia, 
Latvia, Poland, Romania and Slovakia). In line with the literature 
studying the distribution of AI-related technological capabilities (as 
noted above), these findings confirm that a country’s innovation system 
relative strength and, relatedly, its ‘absorptive capacity’ play a key role 
in explaining the distribution of AI-related (potential) employment (and 
economic) gains.

Recently, Felten et al. (2023) updated their indicator to isolate ad
vances in Language Modelling (LM) – i.e., the AI technology which is key 

for the development of frontier ‘generative’ applications such as GPT-4 – 
to determine if and to what extent such a specific technological devel
opment could have a peculiar impact on employment. To do so, the 
AIOE undergoes a weighting procedure, allowing it to order occupations 
according to the number of abilities that are related to LM, disregarding 
the other AI-related abilities included in the original indicator. Although 
most of the top-exposed occupations appear in the list provided in Felten 
et al. (2021), some relevant ‘new entries’ are worth mentioning. Among 
the top occupations exposed to LM AI are telemarketers and various 
post-secondary teachers in fields such as English language and litera
ture, foreign language and literature and history. Concerning the dis
tribution of the LM AI indicator across industries, the sectors displaying 
the highest values include legal services and securities, commodities and 
investments.

Focusing on occupations but adopting a different approach, Gmyrek 
et al. (2023) assess the employment impact of Generative Pre-Trained 
Transformers (GPTs). Unlike Felten et al. (2021, 2023), these authors 
use Chat GPT-4 to estimate task-level scores of occupation exposure to 
AI. This ranking is then used to quantify the impact of AI on employment 
and job quality, by country and income group. According to their esti
mations, only occupations related to clerical work are highly exposed to 
AI, with 24 % of clerical tasks considered highly exposed and an addi
tional 58 % with medium-level exposure. Concerning other occupational 
groups, the greatest share of highly exposed tasks ranges between 1 % 
and 4 %, and medium exposed tasks do not exceed 25 %. As a result, they 
reject the hypothesis of massive substitution, pointing instead to com
plementary effects that are concentrated among white collars and 
high-skilled occupations. A similar analysis is carried out by Elondou 
et al. (2023), who combine experts’ opinion and GPT-4 classifications to 
quantify the impact of GPTs on the US labour market. Merging task-level 
information stemming from O*NET and employment data drawn from 
the Bureau of Labour Statistics (BLS) referring to the years 2020 and 
2021, these authors reveal that around 80 % of the US workforce could 
have at least 10 % of their work tasks affected by GPTs, while almost one 
fifth of occupations could have up to 50 % of their tasks impacted. 
Confirming previous evidence, the highest level of exposure is concen
trated at the top of the occupational distribution, among high-skilled 
and high-income workers.

Despite being very useful for characterising occupations according to 
their relative AI exposure, occupation and task-based measures have 
notable limitations. First, this type of indicator provides a proxy of 
‘potential’ AI exposure, remaining silent on whether such technologies 
are actually employed – along with the ‘how, when and where’. Second, 
and relatedly, these indicators lack any information about industry- and 
firm-level technological heterogeneities which, as discussed above, may 
play a key role in shaping the impact of such technologies. In an attempt 
to account, jointly, for technological and occupational heterogeneities, 
Webb (2020) developed an indicator tracking the co-occurrence of 
verb-noun pairs in the title of AI patents and O*NET tasks. In this way, 
he obtains a measure which considers, at the same time, technological 
choices of firms (and fine-grained characteristics of specific AI tech
nologies) as illustrated in patents and task-related characteristics of 
occupations, as reported in O*NET. According to Webb (2020)’s results, 
AI is more likely to affect skilled and older workers than previous 
innovation waves, such as robots or software. However, the robustness 
of this mixed patent-occupation AI exposure measure is partly under
mined by the fact that patent titles do not fully describe the underlying 
technology. No less relevant, restricting co-occurrence to verb-noun 
pairs risks increasing false positives.

Among the few firm-level studies analysing the employment impli
cations of AI, there is a contribution by Damioli et al. (2023). These 
authors rely on a sample of 3.500 front-runner companies, stemming 
from the Orbis BvD database, which patented AI-related inventions over 
the period 2000–2016 (data are drawn from the PATSTAT database). 
The coefficient associated with AI patents is always positive and sig
nificant, despite being relatively small in terms of size, which points to a 

4 The O*NET program is the US primary source of occupational information. 
Central to the project is the O*NET database, containing information on hun
dreds of standardized and occupation-specific descriptors. The database is 
continually updated by surveying a broad range of workers from each 
occupation.

5 The O*NET repository uses SOC occupational codes used in the US, while 
EU member states follow the International Standard Classification of Occupa
tions (ISCO) to classify occupations. 3-digit ISCO codes are referred to as sub- 
minor groups. See also Section 4.

6 To capture the role of country-specific technological capabilities, Guarascio 
and Reljic (2024) rely on the classification stemming from the European 
Innovation Scoreboard.

D. Guarascio et al.                                                                                                                                                                                                                              Structural Change and Economic Dynamics 73 (2025) 11–24 

14 



moderate positive employment impact of AI patenting (with a 
short-term elasticity of about 3–4 %). Such a ‘labour-friendly’ effect is 
paralleled by an analogously positive and significant effect of other 
(non-AI) firm innovation activities. These findings confirm the 
employment-friendly nature of product innovation in general and pro
vide novel firm-specific evidence on emerging AI technologies. How
ever, it’s important to note that patents serve as a partial measure of 
product innovation, as not all innovation activities are patented, rather 
than direct AI adoption. Additionally, as the study focuses solely on 
patenting companies, it remains silent on the net aggregate effect, failing 
to account for aspects such as ‘business stealing’ (see Calvino and Vir
gillito, 2018).

Another way to look at the relationship between AI technologies and 
employment is to use job-posting data. In a seminal work, Acemoglu 
et al. (2022) rely on Burning Glass Technologies data, which provide 
wide coverage of firm-level online job postings, linked to SOC occupa
tional codes to assess the relative penetration of AI technologies at the 
establishment level in the US. To quantify the degree of firm-level AI 
exposure, they employ three definitions, namely those proposed by 
Brynjolfsson et al. (2018), Felten et al. (2021) and Webb (2020). The 
authors do not find any clear employment effect of AI at the industry or 
occupation-level. Instead, some evidence of a re-composition effect to
wards more AI-intensive jobs emerges. This lack of effects is attributed 
to the relatively limited diffusion of AI technologies and the niche-level 
nature of adoption. In addition, no evidence of direct complementarity 
between AI job posts and non-AI jobs arises, hinting at a prevalent 
substitution effect and workforce re-composition, rather than produc
tivity enhancement after AI adoption. While online job vacancies offer a 
rich data source, caution is necessary when assessing their representa
tiveness of overall labour demand, as they tend to be biased toward 
specific occupations, industries and countries. A systematic overview of 
different AI proxies, along with the main findings and their limitations, 
is available in Table A1 in Appendix.

It is not only about cognitive activities and services, however. AI is 
poised to enhance the capabilities and scope of a number of automation 
technologies, including robots (Agrawal et al. 2019). This connection 
between AI and digital technologies is also more broadly in line with the 
claim by CIIP (2022) that digitalisation, particularly in the industrial 
domain, is less about new tangible technologies and more about the 
integration of existing technologies stemming from the ‘physical’ and 
‘ICT’ worlds. As robots and other machines become ‘smarter’–that is, 
capable of learning and adjusting their ‘behaviour’ in ever more com
plex productive contexts–opportunities for process automation and 
related efficiency gains grow (Barbieri et al. 2020). If this is the case, a 
wave of AI-induced job destruction in manufacturing could be on the 
way (Autor, 2022)–unless the same efficiency gains translate into 
compensation mechanisms capable of offsetting the not so remote pos
sibilities of job destruction (for a discussion on these mechanisms, see 
Calvino and Virgillito, 2018). It is hard to say, at present, which is the 
most likely scenario, as no robust empirical evidence on the impact of AI 
on manufacturing seems to be available.

Four main takeaway messages emerge from this brief literature re
view. First, much remains to be understood about the employment 
impact of AI, as AI is still in its early stage of diffusion and novelties in 
terms of applications and potential impact on job quality and quantity 
continuing to emerge. Second, although the available indicators repre
sent a very useful base to assess exposure and (potential) employment 
impact of AI, further refinements, considering both the characteristics of 
occupations and actual business decisions, as well as the specifics of 
industries regarding the adoption process, would be of great advantage. 
Third, spatial specificities (e.g., characteristics of regions, provinces, 
cities or local labour markets) must be adequately taken into account, 
given the weight that these elements may have in determining the 
diffusion of AI and its impact on the labour market. Fourth, more evi
dence is needed regarding the intertwining of AI and automation tech
nologies in manufacturing (e.g., robots). This is particularly relevant in 

the European case, where manufacturing still plays an important role 
and the diffusion of AI could intertwine with transformative trends such 
as the transition toward electrification in the energy and automotive 
sectors.

We have now reviewed the relevant literature and highlighted the 
key issues concerning the AI-employment nexus. In what follows, we 
spell out our research questions, which aim to address some of the 
abovementioned gaps in the literature.

3. AI exposure and employment in european regions: research 
questions and contribution

As one of the world’s largest markets, Europe has seen a growing 
diffusion of AI technologies, driven by its knowledge-intensive business 
services and high-tech manufacturing industries (European Commis
sion, 2018). Yet, a major technological gap vis-à-vis the US and China 
has also been documented, particularly in the realm of digital technol
ogies (Maslej et al., 2024). Therefore, at least for now, European econ
omies and regions are regarded more as potential adopters (and, to a 
certain extent, ‘regulators’ of AI) rather than developers of such tech
nologies. It is too early to determine how this peculiar status of the 
European economy will affect AI diffusion patterns and their economic 
(and labour) implications. Yet, this must be taken seriously into account 
when interpreting the available empirical evidence and, even more so, 
in predicting technological, economic and employment dynamics 
related to the unfolding of AI.

Against this background, we pursue two major analytical tasks. The 
first one concerns highlighting the role of technological and structural 
heterogeneities in shaping the potential impact of AI across European 
regions. To do so, we examine the co-evolution of AI exposure, on the 
one hand; and of a set of key factors (i.e., R&D intensity, share of high- 
skilled workers) likely to affect absorptive capacity as well as the dis
tribution of AI-related gains/costs, on the other. Once different regional 
clusters are grouped in terms of productive, technological and labour 
market characteristics, on top of relative AI exposure, the second 
analytical task regards comparing their employment patterns.

In so doing, we provide a twofold contribution to the extant litera
ture. First, we enrich the evidence regarding the geography of AI in 
Europe (Xiao and Boschma, 2023), highlighting the joint role of key 
dimensions affecting strength and characteristics of local innovation 
systems as well as shaping diffusion processes. This is particularly 
relevant in the European case, where structural heterogeneities and 
related divergence in economic and employment patterns across coun
tries and regions constitute a major policy concern, as testified by the 
large chunk of EU funds devoted to structural/cohesion policies (Darvas 
et al., 2019; Landesmann and Stöllinger, 2020). Second, we contribute 
to the still limited body of research (Albanesi et al., 2023; Guarascio and 
Reljic, 2024) exploring the employment implications of AI in Europe, by 
revealing structural factors that may affect regional readiness for AI as 
well as susceptibility to labour-saving effects. Third, by linking struc
tural factors with potential employment outcomes, we show how AI 
could reinforce regional inequalities in Europe.7.

More specifically, two main research questions are addressed. How 
do European regions’ structural characteristics influence their capacity 
to adopt and benefit from AI technologies? To explore this, we adapt 
Felten et al. (2021)’s AI Occupational Exposure Index to European oc
cupations, aggregating it to the NUTS-2 regional level (see Section 4). 
Given that new technologies are more likely to emerge in regions where 

7 The empirical research quantifying AI’s impact on the European labour 
markets remains limited compared to the US. This gap is especially pronounced 
when it comes to exploring AI’s potentially heterogeneous impacts across 
countries and regions. While existing studies, such as Albanesi et al. (2023), 
hint at country disparities in AI exposure, they do not take into account strong 
inter- and intra-country structural heterogeneity characterising different areas.
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they are related to the preexisting local capabilities (Boschma, 2017), we 
use a cluster analysis to examine how region-specific factors—such as 
sectoral specialisation, R&D investment and workforce skills—shape 
regional AI readiness. This clustering exercise allow us to identify re
gions with high AI adoption potential and those facing structural con
straints. Building on these clusters, we then ask: What are the likely 
employment implications of AI, given these structural differences? This 
question considers how regional structures might shape AI’s potential to 
either complement or substitute labour. In regions characterised by high 
levels of knowledge-intensive services, educational attainment and R&D 
investment, AI might complement high-skilled labour, boosting pro
ductivity and labour demand in sectors like ICT, finance and profes
sional services. In contrast, regions dominated by labour-intensive 
industries, where low- to medium-technology sectors and limited R&D 
are prevalent, face structural barriers that may hinder AI adoption in the 
first place.

The following sections illustrate data used, offer a comprehensive 
assessment of AI occupational exposure across EU’s occupations and 
regions, outline the empirical strategy and present the main results.

4. Data and descriptive evidence

4.1. Data

We combine data from several sources referring to the period 
2011–2018.8,9 Since the NUTS-2 classification has undergone changes in 
some countries over time due to a combination of administrative and 
statistical-related factors (Eurostat, 2020), we took specific steps to 
ensure data consistency throughout this period. For regions where only 
the NUTS labels changed (e.g., French regions), we simply recoded the 
labels. However, in cases where the classification involved more sig
nificant changes, such as the splitting or merging of regions, we aggre
gated NUTS-2 regions (e.g., LT00–02, IE01–06, DE40–42).10

Artificial Intelligence. Regarding AI, we draw on earlier works by 
Felten et al. (2018, 2021), who made available the indicator of AI 
occupational exposure. This indicator links various AI applications - 
abstract strategy games, real-time video games, image recognition, vi
sual question answering, image generation, reading comprehension, 
language modelling, translation, speech recognition and instrumental 
track recognition - to 52 workplace abilities (e.g., mathematical 
reasoning, speech recognition, written comprehension, originality, body 
coordination) using the mTurk web service survey.11 Occupational 
exposure to AI (AIOE) is constructed by weighting the ability-level 
exposure to AI with their prevalence and importance within each 
occupation: 

AIOEk =

∑52
j=1Aij ∗ Ljk ∗ Ijk
∑52

j=1Ljk ∗ Ijk
(1) 

where Aij stands for the ability-level AI exposure, calculated as a sum of 
relatedness scores across ten AI applications for each of the 52 abilities; 
Ljk and Ijk represent prevalence and importance of each ability (j) within 

each occupation (k).
This means that occupations characterised by a higher prevalence 

and importance of abilities classified as highly exposed to AI exhibit a 
relatively higher exposure to AI, and vice versa. Under the assumption 
that AI-related workplace abilities of US occupations are similar to those 
characterising their EU counterparts12 (Albanesi et al., 2023), we map 
Felten et al.’s AIOE available at the six-digit SOC occupations into the 
International Classification of occupations (ISCO-08) at the four-digit 
level, ultimately collapsing at the three-digit ISCO level (126) by 
calculating the mean exposure across occupations. As the focus of our 
analysis are European regions, we construct a regional AI exposure 
(AIRE) indicator following the approach suggested by Felten et al. 
(2021). To this end, we combine the occupational AI exposure (AIOE) 
with the occupational distribution (ISCO 3-digit) of employees within 
regions from the EU LFS, as follows: 

AIREij =
∑126

k=1

EMPkij

EMPij
∗ AIOEk (2) 

where EMPkijt denotes the number of employees in occupation k in re
gion j in country i, while EMPijt stands for the total number of employees 
in region j in country i. Thus, the first term denotes the employment 
share of each of the 126 ISCO 3-digit occupations in region r in 2018, 
while AIOEk corresponds to occupational AI exposure, as defined in 
Equation 1.13 The AIRE indicator is normalised to have a zero mean and 
unit standard deviation, representing relative AI exposure across 
regions.

As argued before, the main limitation of Felten et al. (2021)’s indi
cator is that measures crowd-sourced opinions on relative exposure to AI 
technologies. It sheds light on which occupations, industries, countries 
and regions are most likely to be affected by advancements in AI rather 
than on its actual adoption. Recent work by Marguerit (2024) attempts 
to provide a proxy more similar to AI adoption constructing a measure of 
overlap between AI-related questions from Stack Overflow, reflecting 
the real-time problems developers are encountering and workplace 
abilities. Interestingly, the correlation with Felten et al.’s indicator is 
almost 1, providing reassurance about its robustness. Furthermore, we 
also check the degree of correlation with the data from Eurostat ICT 
business survey, reporting the percentage of enterprises employing AI 
technologies. To allow for comparison, we calculate AI exposure at the 
country level by combining the AIOE data with the occupational dis
tribution (ISCO 3-digit) of employees within each country. Fig. 1 pre
sents a scatter plot displaying the relationship between country level AI 
exposure and Eurostat’s AI adoption indicator. Despite some noise, the 
positive correlation (correlation coefficient: 0.57) suggests that occu
pational AI exposure is fairly related to adoption, at least to a certain 
extent. Specifically, countries with higher degree of AI exposure tend to 
have a greater share of enterprises that adopt AI technologies.

While AI indicator appears effective in capturing the occupational 
exposure to AI technologies (and to some extent AI adoption, see Fig. 2), 
it falls short in accounting for AI’s role in the realm of robotics. Indeed, 
Felten et al. (2019) explicitly acknowledge their focus on ‘purely AI 
technologies,’ intentionally omitting consideration of ‘how the interac
tion between advanced AI and robotics technologies affects abilities or 
occupations.’ Consequently, AI occupational exposure is inherently 
skewed toward cognitive abilities and tasks. While this is not necessarily 
a limitation, it is important to note that this indicator does not account 
for the fact that AI is also enhancing automation potential in 
manufacturing industries by making industrial robots more flexible, 
autonomous and intelligent (IFR, 2022; Soori et al., 2023).

8 Our sample starts in 2011 due to a major revision of ISCO (International 
Standard Classification of Occupations), when ISCO-88 was succeeded by ISCO- 
08, which makes comparisons before and after 2011 impossible.

9 Austria, Belgium, Bulgaria, Czech Republic, Germany, Denmark, Estonia, 
Spain, Finland, France, Greece, Hungary, Ireland, Italy, Lithuania, Latvia, 
Netherlands, Poland, Portugal, Romania, Sweden and Slovakia.
10 For example, in the case of Lithuania, the change in classification in 2013 

resulted in the separation of Lithuania into two NUTS-2 regions.
11 The matching is realised by administering a questionnaire to 2,000 in

dividuals, reached with Amazon’s Mechanical Turk (mTurk) web service. In
terviewees are asked whether AI applications are related to or could be used for 
each of the 52 abilities listed in the O*NET. A detailed methodology is provided 
in Felten et al. (2021).

12 An analysis showing the US-EU within-occupation similarities in terms of 
digital task content has been recently provided by Gschwent et al. (2023).
13 Note that we introduce dynamics by allowing our indicator AIRE to vary 

over time, reflecting the changes in the occupational distribution.
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Robots. We rely on International Federation of Robotics (IFR) data
base, which provides information on the robot stock and new in
stalments at the country-industry level in manufacturing sector. As 
extensively discussed in Fernández-Macías et al. (2021), the IFR data 
comes with an important caveat: they do not account for variations in 

robot quality across different industries, countries and time periods. 
Nevertheless, the IFR remains the most reliable source of data upon 
which empirical literature on the employment effects of robots has 
flourished (see Acemoglu and Restrepo, 2020; Fernandez-Macias et al., 
2021; Jestl, 2024; Petit et al., 2023; Reljic et al., 2023; Valentini et al., 

Fig. 1. AI exposure and share of enterprises using AI technologies by country.
Source: Authors’ elaboration based on Felten et al. and Eurostat’s ICT business survey

Fig. 2. AI exposure across European regions in 2018.
Source: Authors’ elaboration based on Felten et al. (2021)
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2023, among others).
In line with earlier studies (Jestl, 2024; Petit et al., 2023, among 

others), to construct an indicator of robot density at the regional level 
we assume that the distribution of robots within an industry is uniform 
across regions within a country, conditional on the industry-region 
employment shares. To this end, we combine industry-level data on 
robot stock with employment distribution across the 2-digit NACE Rev.2 
industries within regions, as follows: 

Robot stockrt =
∑J

j=1

EMPjrt

EMPrt
∗ Robot stockjt (3) 

where EMPjrt denotes the number of employees in industry j in region r 
in year t, EMPrt stands for the total number of employees in region r in 
year t and J represents the complete set of industries for which robot 
stock (Robot stockjt) is available.

Structural variables. Given the significant role that structural het
erogeneities play in shaping the labour market impacts of technological 
change (Reljic et al., 2023), we include several variables to capture 
sectoral specialisation, skills, labour market institutions and techno
logical factors influencing the diffusion of new technologies in regions. 
First, regions with a highly educated workforce are more likely to 
benefit from new technologies, attract innovative firms and sustain 
positive employment trajectories. To proxy for skills, we use the per
centage of employees with a tertiary degree, sourced from the EU LFS. 
Second, the strength of labour market institutions is proxied by the share 
of non-standard work (NSW), which includes all employment types 
other than full-time permanent contracts. A higher share of 
non-standard work suggests a greater level of labour market liberalisa
tion. Additionally, firm size maybe an important determinant of AI 
adoption. Empirical evidence from Rammer et al. (2021) shows that in 
Germany, large firms (with at least 1000 employees) are nearly ten times 
more likely to adopt AI compared to small businesses (5 to 9 employees). 
Furthermore, AI adoption is also uneven across sectors, with the latest 
Eurostat ICT business survey indicating higher AI adoption rates in ICT 
services and professional business activities. To capture these structural 
differences, we consider the size of the manufacturing sector, the share 
of knowledge-intensive services and the share of firms with >50 em
ployees. Finally, we also include regional levels of gross fixed capital 
formation, R&D investment and labour productivity, as these factors are 
critical for understanding the capacity of regions to adopt and benefit 
from new technologies, thereby influencing the employment impact of 
AI. All variables used in the empirical analysis and their sources are 
listed in Table A2 in Appendix.

4.2. Descriptive evidence

In order to get a first impression of the AI exposure index, we list the 
ten ISCO 3-digit occupations with the highest (Table 1) and the lowest 
scores (Table 2). The most striking feature of the top ten list is the 
dominance of high-skilled workers, predominantly stemming from the 

group of professionals (ISCO major group 2). The relatively high AI 
exposure of high-skilled workers is also in line with the wide-spread 
perception that labour market effects of digitalisation – or industry 4.0 
– will affect not only, and maybe even not most strongly, blue-collar 
workers, as was the case with automation (Cirillo et al., 2021). In this 
context, it is noteworthy that the high score of professionals does not 
necessarily imply that these occupations will be substituted by AI 
technologies. Rather, they can also score high if they are complementary 
to AI, or as Felten et al. (2021) point out, the methodology for calcu
lating the AI index is agnostic as to whether AI substitutes or comple
ments occupations (respectively the abilities needed in occupations). 
This characteristic also explains why, along with various professionals, 
there are also some medium-skilled occupations present in the list of 
top-ranking occupations, such as numerical or general office clerks. In 
other words, the rationale of AI-exposure index is partly different from 
the one characterising other well-known occupation-based indices, such 
as the routine-task intensity (RTI) index (Autor et al., 2003) or the off
shoreability index (Acemoglu and Autor, 2011). The latter includes a 
clear task-related occupational hierarchy concerning replacement risks 
vis-à-vis complementarity (i.e. occupations characterised by a relatively 
larger share of routine tasks are considered more at risk of 
technology-driven substitution), while no such hypotheses are made to 
build the AIOE.

At the other end of the spectrum (Table 2), we find mostly low-skilled 
occupations, in particular elementary ones. Common traits include the 
relatively lower technological intensity of their tasks, which are mostly 
manual and physical but not necessarily repetitive. Several of these 
occupations have little or no relevance anymore in most EU member 
states, which is particularly true for subsistence farmers or subsistence 
fishers and hunters.

Looking at the distribution of the AI exposure across European re
gions in Fig. 2, it is not surprising to find high AI exposure in many high- 
income regions, including regions where capital cities are located. 
Paradigmatic examples are: Ile de France (Paris region), Vienna, Berlin, 
Warsaw metropolitan area, Prague and many more. In other cases, 
larger areas of the country are identified as having high AI exposure, 
such as North Holland, South Holland and the Utrecht region in the 
Netherlands or Southern Sweden and Lower Bavaria in Germany. All 
these regions, however, are also high-income regions, both in an EU- 
wide comparison and a national comparison. In contrast, in the South
ern periphery (Spain, Italy) and the Eastern periphery (Romania, 
Bulgaria) there are numerous regions with very low levels of AI expo
sure. These patterns coincide well with other measures for implicit 
technological capabilities across Europe, such as, for example, func
tional specialisation patterns (Kordalska et al., 2022).

5. Cluster analysis and employment patterns: results

This section presents the findings from our cluster analysis, which 

Table 1 
Top 10 most AI exposed occupations.

Ranking ISCO 3-digit ISCO 3-digit label

1 212 Mathematicians, Actuaries and Statisticians
2 241 Finance Professionals
3 261 Legal Professionals
4 242 Administration Professionals
5 431 Numerical Clerks
6 231 University and Higher Education Teachers
7 411 General Office Clerks
8 122 Sales, Marketing and Development Managers
9 251 Software and Applications Developers and Analysts
10 233 Secondary Education Teachers

Source: Authors’ elaboration based on Felten et al. (2021).

Table 2 
Bottom 10 least exposed occupations.

Ranking ISCO 3- 
digit

ISCO 3-digit label

126 931 Mining and Construction Labourers
125 631 Subsistence Crop Farmers
124 912 Vehicle, Window, Laundry and Other Hand Cleaning 

Workers
123 911 Domestic, Hotel and Office Cleaners and Helpers
122 713 Painters, Building Structure Cleaners and Related Trades 

Workers
121 634 Subsistence Fishers, Hunters, Trappers and Gatherers
120 932 Manufacturing Labourers
119 921 Agricultural, Forestry and Fishery Labourers
118 633 Subsistence Mixed Crop and Livestock Farmers
117 712 Building Finishers and Related Trades Workers

Source: Authors’ elaboration based on Felten et al. (2021).
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highlights significant regional differences in AI ‘readiness’, measured by 
combining AI exposure, sectoral composition, investments, productivity 
and skills.14 We detail each cluster below, focusing on the key variables 
that differentiate them and their implications for employment dynamics.

Before conducting the cluster analysis, we examined correlations 
among the indicators (Fig. 3). Positive correlations between AI expo
sure, R&D investment, university education and the share of knowledge- 
intensive services (KIS) suggest that regions with higher innovation 
capacity and human capital are more likely to adopt AI technologies. 
Conversely, the negative correlation between AI exposure and 
manufacturing share (− 0.28) does not imply that AI is absent from 
manufacturing. Instead, it reflects AI indicator’s emphasis on cognitive 
tasks, while overlooking interactions between AI and robotics in in
dustrial settings. This is further supported by the weak correlation with 
robot density (0.17)—a widely-used measure for studying automation’s 
employment effects (Graetz and Michaels, 2018). Together, these find
ings suggest that AI exposure and robot adoption represent different 
facets of technological progress: AI exposure aligns closely with digi
talisation and the ‘fourth industrial revolution’ (Industry 4.0), while 
robotics remains more connected to traditional automation associated 
with the ‘third industrial revolution’ (Industry 3.0).

To cluster regions, we first applied a hierarchical Ward’s linkage 
method to standardised data, determining the optimal number of clus
ters, and then used a non-hierarchical k-means analysis to fine-tune the 
grouping. The optimal number of clusters was found to be four,15 based 
on the Calinski-Harabasz pseudo-F test. These clusters, mapped in Fig. 4, 
are labelled as follows: high-tech service and capital centres, advanced 
manufacturing core, southern and eastern periphery.16 Table 3 provides key 
statistics for each cluster, offering a comparative overview of their 
distinct characteristics.

The first cluster, high-tech service and capital centres, is dominated by 
capital city regions and economically advanced areas such as Vienna, 
Brussels, Berlin, Madrid, Île-de-France, Helsinki, Lazio, Prague and 
Bratislava. Characterised by high AI exposure, a concentration of 
knowledge-intensive services (KIS), high levels of university graduates 

and substantial R&D investment, these regions are administrative, 
financial and innovation hubs. Given these favourable ‘conditions’, they 
are likely to experience positive employment outcomes if AI comple
ments high-skilled labour in sectors such as ICT, finance and profes
sional services. AI adoption in these regions is expected to enhance 
productivity while potentially creating new job opportunities, rein
forcing their status as innovation-driven economic engines within their 
respective countries. Their strong absorptive capacity—rooted in robust 
technological capabilities and human capital—position them well to 
harness AI technologies (Boschma, 2017; Xiao and Boschma, 2023). In 
these regions, AI is likely to complement high-skilled labour, particu
larly in sectors like ICT, finance and professional services.

The second cluster, advanced manufacturing core, primarily consists of 
German regions but also includes other key industrial areas in Austria, 
Belgium, France, Italy and Spain (these results qualify the evidence 
provided by Stehrer and Stöllinger, 2015 analysing the German 
manufacturing core). These regions, such as Baden-Württemberg (Ger
many), Piedmont (Italy), Navarra (Spain), Alsace (France) and Styria 
(Austria), maintain strong industrial production bases, particularly in 
the automotive sector. This sectoral structure helps explain their mod
erate AI exposure but relatively high robot density, reflecting a focus on 
traditional forms of automation. The presence of large firms, robust R&D 
investment and highly skilled workforce endow these regions with the 
absorptive capacity needed to integrate AI into existing capital-intensive 
production systems. Although their AI exposure is not as high as in 
service-oriented regions, their high-tech specialisation and high robot 
density signal strong potential for AI integration and productivity gains 
within manufacturing.

The third cluster, southern periphery, includes regions from southern 
Europe, such as the Greek islands, southern Italy and Andalusia, along 
with some outliers. While some regions from Austria and Germany also 
appear in this cluster, the label reflects the structural challenges com
mon in southern Europe: weaker innovation ecosystems, low produc
tivity, limited investment and lower skill levels (Celi et al., 2018). These 
factors constrain these regions’ ability to reap benefits from the ongoing 
digital transition. Their lower AI exposure is unsurprising, as local 
economies still heavily rely on traditional sectors like tourism (e.g., the 
Greek islands) and agriculture (e.g., Andalusia, Northern Greece and 
southern Italy). These structural weaknesses, including low absorptive 
capacity, significantly limit their ability to adopt and take advantage of 
AI technologies.

The fourth cluster, eastern periphery, consists of regions from Eastern 
Europe, including Czechia, Poland, Hungary, Romania, Bulgaria and the 
Baltics. These regions share a strong industrial base but exhibit lower 
levels of AI exposure, robot adoption and R&D investment compared to 
the advanced manufacturing core. Despite their industrial strength, 
limited innovation capacity and relatively low levels of KIS and work
force skills restrict their ability to adopt advanced technologies. The lack 
of absorptive capacity—especially in terms of R&D and human capi
tal—poses a challenge to fully exploit transformation potential of AI 
technologies.

Overall, each cluster presents distinct challenges and opportunities. 
In what follows, we discuss how these differences could shape the 
impact of AI technologies in the future.

We begin by reporting the employment growth between 2011 and 
2018 by cluster (Table 4). Interestingly, relatively higher employment 
growth is detected in regions where manufacturing plays an important 
role. The eastern periphery shows the highest employment growth, 
suggesting some convergence with more advanced regions, although AI 
is unlikely to be the driver of these changes. A slightly lower employ
ment growth is detected in the ‘high-tech service regions & capital 
centres’ cluster while the southern periphery turns out to be the less 
dynamic. If anything, such patterns suggest that, so far, employment 
patterns are mostly driven by well-known structural drivers (i.e., share 
of manufacturing industries likely to capture most of the external de
mand and FDI flows) shaping growth and industrial restructuring in 

Fig. 3. Correlation matrix.
Source: Authors’ elaboration, Note: All variables refer to 2018; KIS refers to 
knowledge-intensive services.

14 We thank the Editor for suggesting such analytical development. All the 
usual disclaimers apply.
15 All four multivariate (MANOVA) tests reject the null hypothesis, indicating 

a significant difference between the 9-dimensional mean vectors across the four 
clusters.
16 The full list of regions by cluster is provided in Table A3 in the Appendix.
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Europe over the last decades (for a thorough discussion, see Guarascio 
et al., 2024; Celi et al., 2018). Moreover, the positive relationship be
tween AI exposure and employment dynamics documented, among the 
others, by Albanesi et al. (2023) and Guarascio and Reljic (2024) be
comes more nuanced as far as regional and structural heterogeneities are 
explicitly considered.

To push the analysis further, the scatterplots in Fig. 5 illustrate the 
relationship between AI exposure and employment growth across the 
four clusters. By inspecting such heterogeneous patterns, it is possible to 
speculate around possible future scenarios for AI’s impact on employ
ment in different regions.

In high-tech services and capital centres, the positive association be
tween AI exposure and employment growth reflects a broader process, 
whereby strong innovation systems create an environment conducive to 
adopting new technologies. High AI in these regions, coupled with a 
virtuous circle linking R&D, skills and economic activity, forms a rein
forcing mechanism that is likely to drive productivity and employment 
growth (Pianta and Reljic, 2022). Rather than being disruptive, AI in 
these regions is expected to complement high-skilled labour, enhancing 
existing competencies and expanding job opportunities within 
knowledge-intensive industries such as ICT, finance and professional 
services.

In the advanced manufacturing core, the positive association between 
AI exposure and employment growth should be interpreted with 
caution. Here, AI plays a secondary role to more traditional forms of 
automation, particularly industrial robots, which remain the backbone 
of production systems. AI’s contribution, by making robots more flex
ible, autonomous and intelligent, is likely to drive process innovation 
without fundamentally altering their underlying structures. As a result, 
AI in this context is less about disruption—displacing labour en masse
—and more about enhancing the efficiency of established processes. 

Fig. 4. Regional clusters.
Source: Authors’ elaboration

Table 3 
Descriptives by cluster.

High-tech 
service regions 
& capital 
centers

Advanced 
manufacturing 
core

Southern 
periphery

Eastern 
periphery

AIOE 0,944 0,196 − 0,619 − 0,660
Robot density 5534 15,271 4202 3345
NSW 0,304 0,369 0,322 0,157
KIS 0,544 0,419 0,466 0,371
Manufacturing 0,130 0,242 0,136 0,270
University 
graduates

0,414 0,286 0,294 0,268

Large firms 0,452 0,519 0,298 0,413
Investments 20,956,683 16,547,184 6321,443 3823,107
GVA/EMP 83,739 73,509 79,683 23,665
R&D 2188 2680 0,936 0,886

Source: Authors’ elaboration; Notes: NSW stands for non-standard work.

Table 4 
Employment growth by cluster.

High-tech 
service 
regions & 
capital 
centers

Advanced 
manufacturing 
core

Southern 
periphery

Eastern 
periphery

Employment 
growth 
2011–2018

6031 9363 4830 14,193

Source: Authors’ elaboration.
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Moreover, in this area employment growth has been mostly driven by 
the remarkable export performance of (to a significant extent German- 
based) exporting industries. Yet, as the global landscape is rapidly 
changing with a potential downsizing of export-led growth opportu
nities, the employment dynamics of this cluster could also change 
(Guarascio et al., 2024). What could be the role of AI in such a changing 
scenario is still hard to say.

In the southern periphery, the relatively flat line suggests that AI has 
had—and is likely to continue having—a limited impact on labour 
market dynamics. These regions are characterised by low levels of AI 
exposure and a smaller share of high-tech services and manufacturing 
industries, factors that are likely to impede the adoption of AI technol
ogies. Moreover, the absence of large firms and low absorptive capacity 
further constraint their potential for structural upgrading. This places 
the southern periphery on a ‘low-road’ trajectory, leaving little room for 
AI to spur significant changes in terms of productivity and employment.

In the eastern periphery, although these regions experienced the 
highest employment growth between 2011 and 2018, low AI exposure 
suggests that this growth was driven by factors other than AI (see the 
discussion above). Minimal AI adoption, low R&D investment and 
limited skills indicate that these employment gains are largely the result 
of labour-intensive manufacturing rather than technological trans
formation. Looking forward, AI adoption could lead to labour 
displacement rather than job creation, given these regions’ specialisa
tion in labour-intensive stages of production, such as fabrication 
(Kordalska et al., 2022). To benefit from AI, these regions would require 
structural upgrading toward more advanced manufacturing activities 
and, potentially, increasing the share of high-tech services Without this 

shift, the potential for AI to contribute to productivity and employment 
growth remains limited.

This analysis reveals not only the uneven exposure to AI technologies 
across regional clusters but also the asymmetric distribution of capa
bilities required to fully harness AI’s transformative potential. The sce
narios illustrated here reflect how technological, institutional and 
economic factors interact to determine which regions will be the early 
adopters-and beneficiaries- and which are likely to lag behind.

The heterogeneity across clusters underscores the path-dependent 
and context-specific nature of AI’s impact on employment. In high- 
tech services and capital regions, accumulated technological capabil
ities are likely to enable AI to complement existing economic activities, 
potentially leading to positive employment outcomes. By contrast, the 
southern and eastern peripheries face significant structural bar
riers—including sectoral specialisation, low R&D investment, limited 
skills—which hinder both their ability to adopt AI technologies and 
ultimately benefit from them.

6. Conclusion and policy implications

This paper adds to the nascent literature on the exposure to AI 
technologies and their expected employment implications. We focus on 
Europe, which is a relevant case in point for at least three reasons. First, 
promoting the adoption of digital technologies is now at the centre of the 
EU industrial policy strategy, given the widely acknowledged techno
logical gap vis-à-vis the US and China (Guarascio et al., 2024). Second, 
the available empirical evidence on AI is to a significant extent US 
centric while less is known about exposure, adoption and impact in 

Fig. 5. Employment growth and AI exposure.
Source: Authors’ elaboration
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Europe. This lag is primarily due to better data availability for the US 
economy, where researchers can draw on publicly available data on 
occupational profiles as well as employment and wage data at a very 
granular level. Third, Europe is characterised by significant structural 
and territorial heterogeneities which may affect in a fundamental way 
the economic and employment impact of AI.

In this context, country and region-specific empirical analyses are 
indispensable, as structural heterogeneities may lead to completely 
different outcomes when it comes to the diffusion of potentially 
disruptive technologies such as AI. Our analysis reveals significant 
regional differences in AI ‘readiness’ across Europe, driven by key fac
tors such as accumulated technological capabilities, R&D investment, 
sectoral composition (e.g., a large share of knowledge-intensive ser
vices) and the availability of a highly skilled workforce. This confirms 
the importance of considering the differences between national and 
local innovation systems when assessing the impact of specific tech
nologies. Regions where high-tech service centres and advanced 
manufacturing hubs are located, seem to have the most favourable 
conditions for adopting AI and, potentially, seizing the associated eco
nomic and employment opportunities. In contrast, regions in the 
southern and eastern peripheries —characterised by lower R&D in
vestment, weaker innovation ecosystems and a reliance on labour- 
intensive industries—lack these key enablers, limiting the opportu
nities for AI adoption.

This is related to a more general aspect of technological change, 
Kranzberg’s Law, which holds that, “Technology is neither good nor bad; 
nor is it neutral” (Kranzberg, 1986, p. 545). The point the technological 
historian put forward in his writings is that the consequences of tech
nology depend not only on its technical features but on the societal and 
temporal context. Hence, chances are that there is no single answer to 
the question of what AI means for jobs that researchers are so eager to 
answer. Rather, answers can only be partial, specific to the locations and 
time periods analysed.

This means that there is no universal answer to the question if – and 
in the affirmative –how AI will affect labour markets in general. We do 
not know whether the ‘future of work’ will resemble the rosy world 
envisaged by Keynes (2010[1931]) in his essay on the Economic Possi
bilities for Our Grandchildren, in which new technologies – in our context 
AI – lead to such massive increases in productivity, essentially freeing 
society from scarcities and allowing people to indulge in science, arts 
and philosophy. We would see this as the positive or ‘Star Trek’ scenario. 
Things could play out very differently, though. As outlined by Leontief 
(1983), humans may face the same destiny as horses in their function as 
‘workforce’, meaning they will just not be needed anymore, apart for 
some curious nostalgic purposes such as tourist entertainment showing 
the ways of the past, sports, or the circus. This ‘Death of the Workhorse’ 
scenario in which men lose the race against machines has become 
popular among economists with many facets of it. This prevalence of the 
pessimistic view is the result of two characteristics and their interaction: 
one related to AI, the other to the current economic paradigm. Leontief’s 
point is that the horse as a production input became obsolete because the 
steam engine outcompeted the workhorse in its core competencies – 
physical strength and stamina. Likewise, AI in many work contexts now 
outcompetes humans in cognitive tasks and also seriously challenges 
them in (simple) social interaction. This feeds the ‘this time is different’ 
narrative which often comes with a Luddite undertone but in principle 
could be counteracted by the fact that, unlike the horse, humans 
themselves can decide whether, to what extent and for which purposes 
they want to introduce the new technologies now available. However, 

this safety valve for meaningful human labour risks being undermined 
by the current economic paradigm, which induces firms to use AI not 
primarily to find valuable solutions to societal challenges but to maxi
mise shareholder value. The latter typically involves the replacement of 
labour with AI algorithms (see Acemoglu and Johnson, 2023)17 – typi
cally in combination with robots and other machines.

Our findings suggest that regions with a high robot density and AI 
exposure—particularly in capital-intensive production systems—may 
end up losing jobs in some cases. However, we argue that, in the Euro
pean advanced manufacturing core, AI is more likely to enhance process 
innovation rather than displace labour en masse. In contrast, in the 
eastern periphery, given its specialisation in labour-intensive 
manufacturing industries, AI-enhanced automation could potentially 
lead to labour displacement. This underlines the fact that labour market 
effects emanating from AI may be very heterogenous across EU regions.

Our results must be interpreted with great care for a number of 
reasons. First, a more robust mapping of AI diffusion would have 
required data on actual adoption and information on specific AI tech
nologies/applications, as these may lead to rather heterogeneous out
comes. Yet, so far, the variables capturing the potential diffusion of AI 
technologies are, de facto, the best tool to sketch scenarios about their 
economic and employment implications. In this regard, firm-level data 
on AI adoption would be invaluable for updating and enriching existing 
evidence. Second, an important caveat of this study is that by focusing 
on employment, only one aspect of labour markets is captured, while 
other relevant dimensions of work are neglected, in particular working 
conditions. It could very well be that while new jobs are created, these 
jobs are of a poor quality, meaning they are low in terms of skill re
quirements but above all they lack a sense of meaning. The working 
conditions related to many of these newly created jobs could be 
described as underpaid, isolated, where workers are stuck at home in 
front of their computers with work and leisure time getting increasingly 
blurred. While the results of this first regional analysis have little to say 
in this regard, the fact that AI exposure is skewed towards high-skilled 
jobs and that other studies (Albanesi, et al., 2023; Felten et al., 2019) 
found that AI leads to employment growth primarily for high-skilled 
labour may question this prediction. At the same time, it cannot be 
ruled out that even jobs of high-skilled workers are getting increasingly 
monotonous and meaningless.

In addition to the omission of job quality, there are a number of 
important methodological limitations which have to be kept mind. 
Firstly, quantitative work of the kind undertaken here is bound to make 
inferences from the past onto the future. While this is legitimate, the 
predictions emerging from such an undertaking may be less accurate 
and reliable when they deal with a potentially disruptive technology, i. 
e., AI. Secondly, the diffusion of AI in the economy may still be too 
limited so that its macroeconomic consequences (such as employment 
growth) are hard to identify in the data. Furthermore, there are insti
tutional factors, notably the existence of labour unions, which are likely 
to influence labour market outcomes. More specifically, labour unions 
may to some extent be able to soften AI-related labour-saving. As such 
this constitutes an interesting avenue for further research, as does a 
more differentiated analyses of employment effects by skill groups.
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APPENDIX

Table A1 
AI indicators: findings and limitations.

Data Source Findings Limitations

AI-related Online Job 
Vacancies (e.g., Burning 
Glass)

Acemoglu et al. (2022) found no significant effects of AI at the occupation 
and industry level in the US

Online job vacancies are not representative of overall labour demand; 
occupation- industry- and country-biased

Patents Damioli et al. (2023) studied 3500 leading companies with AI-related 
patents and found a moderate positive employment impact of AI

Not an indicator of adoption, but innovation (partial, as not all 
innovations are patented); sample includes only patenting companies, 
silent on net effects (i.e., business stealing)

AI Patents and O*NET 
Tasks

Webb (2020) used verb-noun pairs in AI patent titles and O*NET tasks to 
measure automation. AI more likely to affect skilled and older workers 
compared to previous innovation waves (ICT and robots)

Focuses on exposure rather than adoption; patent titles may not fully 
describe the underlying technology; selection of keywords is arbitrary

Occupation-based 
Indicators

Felten et al. (2018, 2021) found positive effects on wages but no impact on 
employment in the US; Gmyrek et al. (2023), focusing on GPTs, reveal that 
24 % of clerical tasks are highly exposed

Focuses on exposure rather than adoption; silent on industry and firm- 
level technological differences

Source: Authors’ elaboration.

Table A2 
List of variables.

Variable Definition Source

AI exposure Standardised with 0 mean and a unit standard deviation Felten et al. (2021)
Robot density Robot stock in manufacturing industries per 1000 employees IFR
Total employment Annual employment growth EU LFS
University degree Share of employees with tertiary education EU LFS
KIS Share of employees in knowledge-intensive services EU LFS
Non-standard work Share of employees without permanent full-time contract EU LFS
Manufacturing Share of manufacturing employment EU LFS
Large firms Share of firms with 50+ employees EU LFS
R&D investments R&D as percentage of GDP Eurostat
Investment Gross fixed capital formation ARDECO
Labour productivity Gross value added per employee ARDECO

Source: Authors’ elaboration.

Table A3 
List of regions by cluster.

Cluster Regions

High-tech service regions & capital 
centers

AT12, AT13, AT21, BE10, BE21, BE23, BE24, BE25, BE31, BE32, BE33, BE34, BE35, CZ01, DE30, DE40–42, DE60, DEF0, DK01–05, ES21, 
ES30, ES51, FI18–1C, FI19, FI1A-1D, FR10, FRB0, FRC1, FRD2, FRE1, FRE2, FRF3, FRG0, FRH0, FRI1, FRI2, FRI3, FRJ1, FRJ2, FRK1, FRK2, 
FRL0, GR30, HU10–12, IE01–06, ITI4, NL00, PL12–92, PT17, RO32, SE11, SE12, SE21, SE22, SE23, SE31, SE32, SE33, SK01

Advanced manufacturing core AT22, AT31, AT34, BE22, DE11, DE12, DE13, DE14, DE21, DE22, DE23, DE24, DE25, DE26, DE27, DE50, DE71, DE72, DE73, DE91, DE92, 
DE93, DE94, DEA1, DEA2, DEA3, DEA4, DEA5, DEB0-B3, DEC0, DED2, DED4, DED5, DEE0-E3, DEG0, ES22, FRC2, FRF1, ITC1, ITC4, ITH3, 
ITH5

Southern periphery AT11, AT32, AT33, DE80, ES11, ES12, ES13, ES23, ES24, ES41, ES42, ES43, ES52, ES53, ES61, ES62, ES63, ES70, FRD1, FRF2, GR42, GR43, 
GR51, GR52, GR53, GR54, GR61, GR63, GR64, GR65, ITC2, ITC3, ITF1, ITF2, ITF3, ITF4, ITF5, ITF6, ITG1, ITG2, ITH1, ITH2, ITH4, ITI1, ITI2, 
ITI3, PT15, PT18, PT20, PT30

Eastern manufacturing periphery BG31–33, BG41, BG42–34, CZ02, CZ03, CZ04, CZ05, CZ06, CZ07, CZ08, EE00, HU21, HU22, HU23, HU31, HU32, HU33, LT00–02, LV00, 
PL21, PL22, PL41, PL42, PL43, PL51, PL52, PL61, PL62, PL63, PL71, PL72, PL81, PL82, PL84, PT11, PT16, RO11, RO12, RO21, RO22, RO31, 
RO41, RO42, SK02, SK03, SK04

Source: Authors’ elaboration.

Data availability

Data will be made available on request. 
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