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1. Introduction

Heating and cooling in buildings account for about a quarter of global final energy con-
sumption and about 20% of global energy-related carbon dioxide emissions (Whiteman et
al. ; IEA ). Even as the share of fossil fuels in heat generation declines, global
energy demand for cooling is expected to grow massively due to rising temperatures and
the increasing availability of cooling appliances to a growing number of households (Scoc-
cimarro et al. ; IEA ). Energy price shocks have returned in recent years, and
geopolitical tensions as well as transition risks of fossil industries increase the likelihood of
future shocks. The global price of CO2 is bound to rise as well. The price elasticity of
demand for heating and cooling energy is a central metric for understanding the power of
self-correcting market mechanisms after energy price shocks and the steering effects of CO2
prices.

This paper provides a meta-analysis (Stanley ), a quantitative synthesis of the vast
amount of primary empirical studies that estimate the price elasticity of energy demand
in buildings. These studies cover different fossil fuels and energy sources, countries and
regions, time periods, sectors and sources of the price change; they use various estimation
and identification approaches. We collect their point estimates, standard errors, and study
characteristics.

Our study has three aims: (i) We provide an average estimate based on the statistical
power of a large amount of primary empirical evidence. (ii) We identify patterns that
explain the heterogeneity across studies and samples. (iii) We test and correct for possible
publication selection bias in the literature that may lead to misleading conclusions about
the average size and explanatory factors of the price elasticity. Publication bias may arise
from a preference of researchers, referees, and editors for statistically significant findings
(a.k.a. p-hacking) (Brodeur et al. ; Brodeur et al. ; Chopra et al. ) and, more
generally, a selection of results that conform to conventional wisdom, dominant economic

theories, or the findings of influential publications (Stanley ; Christensen and Miguel



; loannidis et al. ; Card et al. ; Neisser ; Brown et al. ; Andrews and
Kasy ).

We adhered to a systematic study selection process and collected information from 421
primary studies that provided 4,974 comparable elasticity estimates plus the respective
study and estimation characteristics. This is one of the largest meta datasets in the lit-
erature. Moreover, it is one of the first meta-analyses in economics that is based on a
detailed pre-registered pre-analysis plan (PAP), documented at https://osf.io/zdche, to en-
hance the transparency and replicability of our analysis and findings. The PAP includes a
set of testable hypothesis, search strings and study selection criteria, data to be collected,
selection of statistical models and a risk-of-bias assessment.

Our main findings are as follows: (i) The unweighted average price elasticity for heating
and cooling energy in buildings is around -0.3 in the short run and -0.45 in the long run.
These numbers are roughly in line with, or slightly smaller than those of previous literature
reviews and seminal papers in this field (Labandeira et al. ; Espey and Espey ;
Reiss and White ; Alberini et al. ) and a brief summary requested from an artificial
intelligence (AI).

(ii) However, we detect strong and robust signals of p-hacking and publication bias. Sta-
tistically insignificant, close to zero, and positive elasticities appear underrepresented in
the skewed distribution of estimates. This pattern can be detected by suspicious heaping
of estimates just below established significance thresholds (Brodeur et al. ) or by a
significant correlation between standard errors and point estimates that should not occur
according to standard econometric assumptions (Stanley and Doucouliagos ).

The mechanisms that lead to this correlation can be described as follows: with classic
sampling error, the distribution of estimates should be symmetrical around the true un-
derlying elasticity. If the true value is negative and small, low-powered estimates with
considerable standard errors should frequently find null results or positive elasticities. If
such findings are considered implausible or hard to be published, researchers may consider

alternative specifications or samples. Thus, large standard errors might lead researchers to
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seek specifications with more negative point estimates; vice versa, small negative point es-
timates can become significant by specifications involving smaller standard errors. In both
cases, a negative correlation between standard errors and point estimates occurs.

The result is an over-representation of statistically significant and large negative estimates
that inflates the average elasticity. Note that this process does not primarily involve fraud-
ulent actions by authors or selection of results by editors and reviewers, but often a rational
search for a plausible specification of authors before submission (Brodeur et al. ). If
we correct for this effect via a battery of established approaches, the resulting elasticities
are considerably smaller than the conventional wisdom, in a range of -0.05 to -0.2 in the
short run and -0.1 to -0.3 in the long run. That is, the average correction factor is about
50 percent.

(iii) This strong downward correction of the elasticities is robust to a battery of test
procedures, a subsample analysis for different energy sources, energy uses, sectors, country
groups, journal ranks, and estimation approaches, as well as to the inclusion of various
study or estimation characteristics as control variables both in a frequentist and Bayesian
manner. A synthetic study that takes into account best practices from the literature would
report an average elasticity of about -0.1 in the short run and -0.2 in the long run.

(iv) Electricity demand tends to be slightly more elastic to price changes than natural gas
demand with an elasticity that is on average -0.1 units larger. (v) The residential sector also
seem to be slightly more reactive to price changes than the business sector, the elasticity
being around -0.1 units larger. (vi) There are no robust differences for heating vs cooling
demand, for market vs administered price changes, for country groups, or over time.

The finding of a strong downward correction of the results in comparison to the unweighted
average or the conventional wisdom by around 50 percent is not unusual. Meta-meta studies
have reported similar correction factors in other fields (Gechert et al. ; loannidis et al.

). Price elasticities of demand might be prone to publication bias since there is a

coherent and largely unchallenged theory that rules out positive elasticities. In addition,



since the empirical literature is extensive and well-established, statistically insignificant or
unconventional findings may even have lower chances of getting published.

Related literature. Our paper is related to a rich literature on energy price elasticities.
Standard theory holds that energy products, in particular for heating and cooling, are neces-
sities, implying small and negative price elasticities of demand. Monopolistic regional supply
conditions and costly substitution possibilities contribute to inelastic demand (Davis ;
Howie and Atakhanova ). Price sensitivity might also be low under rental agreements
if landlords make contracts with energy suppliers while tenants pay the bills. Moreover,
price signals to tenants often come with long delays under service charge settlements.

Overview studies and meta-analyses with respect to heating and cooling energy sources
are rare. Espey and Espey ( ), based on 36 primary studies, report an average elasticity
of residential electricity demand of around —0.35 in the short run and —0.85 in the long
run. Chai et al. ( ) focus on studies about Chinese natural gas demand elasticities and
find an elastic average short-run gas demand as well as a surprising positive average long-
run elasticity. Labandeira et al. ( ), who cover all energy demand, estimate an average
short-run elasticity of around —0.2 and a long-term elasticity of —0.6 for a subsample of
electricity, natural gas and heating oil.

Meta-analyses have been more frequently applied to the literature on price elasticities
for vehicle fuels in the transport sector (Havranek et al. ; Brons et al. ; Graham
and Glaister ; Goodwin et al. ; Espey ; Espey ). The reported average
elasticities for vehicle fuels are larger in absolute terms than for heating and cooling in
buildings, indicating a higher potential for consumers to respond to fluctuations in fuel
prices by substituting or modifying their consumption habits. Table A.2 in Appendix A
summarizes the findings from these other quantitative reviews. Note that Havranek et al.
( ) is the only other meta-analysis in this field to account for publication bias. Their
corrections are of a similar magnitude.

A related body of literature examines the impact of CO2 pricing on emissions. Drupp et

al. ( ) provide evidence from a large-scale survey among experts from different countries



and report rather coherent levels of recommended CO2 prices. Green ( ) reviews 37
ex-post evaluations of carbon pricing schemes with the lion’s share focusing on European
data and finding only a small effectiveness. Débbeling-Hildebrandt et al. ( ) provide a
systematic and more comprehensive review of 483 effect sizes found for 21 global carbon
pricing schemes. They report a larger average effectiveness of about 10% reduction of
emissions after introduction of a carbon pricing scheme. Their average effect sizes are
reduced by about 1/3 after correcting for publication bias. Note, however, that effectiveness
measures emission reductions after a (large or small) carbon price shock and cannot be
compared to the elasticity estimates in our sample which give the percentage change in
energy consumption after a one percent rise in the energy price.

Our estimation of relatively small short- and long-term elasticities also aligns well with
observed consumption responses to energy-price shocks (Ruhnau et al. ). A back-of-the-
envelope calculation for Germany in 2022, featuring a rise of 4143 percent in the natural gas
retail price and a demand reduction of about -11 percent would imply a short-run elasticity
of -0.08 (Jamissen et al. ), which is fairly in line with our findings. Likewise, Reiss and
White ( ) report an 11 percent fall of electricity consumption of San Diegan households
in the six months after an unexpected and rapid market-price shock of +130 percent in the
summer of 2000, pointing to a short run elasticity of -0.08, which might have been double
the size at an annual horizon of measurement.

The remainder of the paper is structured as follows: Section 2 describes the data collection
and presents descriptive statistics. Section 3 discusses the main findings regarding average
elasticities and tests for publication bias. Section 4 considers the heterogeneity of findings
in the primary studies in relation to study and estimation characteristics. The final section

concludes.



2. Dataset

2.1. Search strategy

Collecting our final dataset involved the following steps: (i) selecting literature databases
and defining search queries; (ii) determining inclusion/exclusion criteria for studies; (iii)
determining relevant study and estimation characteristics derived from our hypotheses; (iv)
screening titles and abstracts of the found entries; (v) full-text screening and coding of all
estimates and characteristics. A detailed outline of the search strategy, including search
queries, inclusion/exclusion criteria, rules for screening the data, and data management
tools used, is available in the PAP. Appendix A.1 includes further information on the actual
process of data collection, including Figure A.1, a flow chart of the steps involved, and the
number of excluded and potentially relevant studies in each step.

The final sample includes 4,974 estimates of the demand elasticity of heating and cooling
energy sources collected from 421 primary studies listed in Appendix D. For each of these
entries we coded 29 study and estimation characteristics, resulting in a spreadsheet with
around 140,000 entries. This is one of the largest meta datasets collected so far. Note that
we employed Al tools to assist the title and abstract screening in step (iv), but that, at the
time of data extraction, a high-quality full-text screening and coding of results and study
characteristics was still beyond the capabilities of Al and required many hours of expert

human labor.

2.2. Hypothesis and data collection

All coded characteristics relate to our set of pre-registered hypotheses. In the present paper,
we focus on the following hypotheses for which we collected related information:

[H1] The simple mean of price elasticities is negative but small (¢ = [—1,0]). We col-
lected all available price-elasticity point estimates per study. Almost all studies commonly
estimated price elasticities via log-log equations such that we only needed to standardize
a minor share of semi-elasticities (log-linear) and marginal propensities (linear-linear) to

elasticities via standard transformations.
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[H2]: There is substantial publication bias that leads to an inflated average of the reported
price elasticity of demand. p-hacking and publication bias typically appear in suspicious
distributions of z-statistics and correlations between point estimates and standard errors of
the coefficient of interest (Egger et al. ; Stanley and Jarrell ; Andrews and Kasy

; Brodeur et al. ). We thus collected standard errors of the price elasticity estimates
and transformed them in accordance with the point estimates as outlined above.!

We collect additional publication characteristics that might be related to publication bias.
We code for the type of publication (journal vs non-journal publications like working papers,
reports, etc.), and the number of citations according to Google Scholar, retrieved on August
19, 2024. We also measure journal impact according to the Scimago Journal Ranking (SJR)
or the Journal Impact Score (JIS) from Scopus, as provided by resurchify.com, retrieved on
August 19, 2024.

We also consider the heterogeneity of our sample in various dimensions, but place less
emphasis on the following additional hypotheses that will be covered in more detail in
follow-up studies:

[H3.] Non-market induced price changes exhibit a more elastic demand reaction compared
to market-induced price changes. Emergy consumers might react differently to different
sources of price changes, including market-based demand and supply shocks, or policy-
induced price changes (Andersson ; Basaglia et al. ; Broin et al. ; Edelstein
and Kilian ; Grieder et al. ). Some studies argue that due to higher salience and
expected persistence of policy-driven price changes, the elasticity could be higher than for
market-driven changes. For the present paper, we categorize all estimates that are clearly

related to market-price changes vs a residual category including different forms of policy

'Some studies report t-statistics or p-values, which we transform by the standard formulae. A few studies
only report compliance with significance thresholds. In these cases, we conservatively code the p-value
at the threshold itself. Note that this can lead to artificial spikes in the density distribution at the
thresholds that would bias some tests of p-hacking. For these tests, we exclude the calculated threshold
standard errors. Several studies calculate short-term and long-term elasticities from dynamic equations,
such as autoregressive distributed lag (ARDL) models. A simple first-order generic form could look
like 2 = o + dxt—1 + esTp: + ur, with z being log energy demand, § the autoregressive term, esr the
short-term price elasticity and p log energy prices. The long-term elasticity can then be derived from
err = est/(1—0). Some studies report inference statistics only for the short-run elasticities. If sufficient
information is given, we calculate the corresponding long-term standard errors using the Delta method.
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measures and mixed cases. We explore the details of different policy-driven price changes
in a follow-up paper (Gechert et al. ).

[H{.] Price elasticities differ between the types of energy sources. The dataset includes
estimates for natural gas, heating oil, electricity, coal, LPG and a mixed category. Each of
the fuels considered are used in different contexts and in heating/cooling appliances. Some
energy sources can be substituted for and used more efficiently due to changing habits or
replacement appliances. In addition, we categorize the use of energy sources for heating,
cooling, or an unspecified mix of uses. Heating and cooling may be prone to different price
sensitivities (De Cian et al. ).

[H5.] Price elasticities differ between sectors. Sector-specific regulations and energy-
efficiency requirements, operating hours, contract details and building types might lead to
different price elasticities. We distinguish residential, commercial, industrial and public
sectors as well as an unspecified sector mix. Often, there is no clear distinction between
commercial and industrial users in primary studies such that we subsumed them under a
business sector. There is only a small number of distinct observations for the public sector,
which we therefore count towards the sector-mix category.

[H6.] Energy demand is less price elastic in the short run becoming more elastic in the long
run. Customers may not easily change their habits, appliances, energy sources or suppliers
in the short term (Labandeira et al. ; Kwon et al. ). Moreover, innovations driven
by price signals may take time to materialize. We categorize all estimates either as short-
term or as long-term elasticities, according to the judgments of the primary studies.?

[H7.] Price elasticities are heterogeneous among countries and regions. Climatic and
geographic conditions, natural resources, technology levels, energy systems, grids, popu-
lation density, regulatory institutions, taxes and subsidies, energy efficiency requirements,

customer preferences and habits, etc. may all contribute to different elasticities among

2If no clear categorization is given in the study, we apply the following rules: We coded price elasticity
estimates to be short run if underlying data were of cross-sectional type, fixed effects estimates, static es-
timates and/or if authors controlled for any kind of capital stock variation (appliances/technology/energy
efficiency) because in these cases no dynamic adaptions can be made by the household/firm/unit of in-
terest so the price elasticity can be considered short-run (Boyd and Lee ; Burke and Liao ).
Otherwise, estimates where coded as long run.



countries and regions. For the present paper, we collect the respective sample countries and
simply classify them into OECD, non-OECD and a mix group.

[H8.] Price elasticities differ over time. Elasticities might exhibit trends according to
technological developments or patterns for specific time periods in relation to major events
or shocks, like oil crises, natural disasters political landmarks, etc. We collect the start and
end-year of the respective sample and calculate an average year. Sample heterogeneity with
respect to time and space will be investigated in more detail in a follow-up paper.

[H9.] There is heterogeneity in price elasticities between the various study designs applied
in the primary studies. This is a universal hypothesis, reflecting a list of potentially relevant
control factors with respect to sample, estimation and publication characteristics that are

detailed in Appendix A.2.

2.3. Descriptive statistics

Table 1 provides descriptive statistics of the main variables in our dataset, separated for
short-run and long-run elasticities. Statistics for the further control variables are shown in
Table A.1 in Appendix A.2. Note that we winsorize elasticities (and their standard errors)
at the 2nd and 98th percentile in order to reduce the impact of outliers, which is standard
in the literature (e.g. Zigraiova et al. ; Gechert and Heimberger ). We later show
that our main results are robust to different levels of winsorization.

The unweighted mean of short-run elasticities is around -0.3 while the long-run mean is
ca. -0.45 with considerable standard deviations. These numbers are roughly in line with
or slightly smaller than those from previous literature reviews and seminal papers in this
field (Labandeira et al. ; Espey and Espey ; Reiss and White ; Alberini et
al. ), see also Table A.2 in Appendix A.4. It is also consistent with a brief summary
requested from an artificial intelligence (AI), GPT-40 mini, which answered that the point
estimate is -0.3 for the short-run elasticity (and that the 95 percent confidence interval
ranges from [-0.1,-0.5]) and -0.6 for the long run (95 percent confidence interval [-0.4,-0.8])

(see Appendix A.5 for details).
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Table 1: Descriptive statistics for estimates and main study characteristics

Time Horizon

short run long run
mean or share SD or freq mean or share SD or freq

price elasticity -0.28 (0.41) -0.44 (0.54)
SE 0.12 (0.18) 0.22 (0.28)
energy source

electricity 57.39% 1,538 52.75% 1,210

coal 3.69% 99 5.71% 131

natural gas 25.11% 673 25.15% 577

LPG 1.12% 30 3.31% 76

heat oil 1.04% 28 0.83% 19

esource mix 11.64% 312 12.25% 281
energy use

heating 25.30% 678 21.97% 504

cooling 3.96% 106 3.49% 80

euse mix 70.75% 1,896 74.54% 1,710
price change market 61.58% 67.14%
country group

OECD 68.02% 1,823 66.91% 1,535

non OECD 27.43% 735 27.24% 625

country mix 4.55% 122 5.84% 134
sector

residential 67.20% 1,801 59.11% 1,356

business 23.47% 629 26.63% 611

sector mix 9.33% 250 14.25% 327

Notes: The table shows descriptive statistics of the elasticities, their standard errors and main study and estimation
characteristics. We separate between short-run and long-run estimates. The numbers are calculated after winsorization
of elasticities and standard errors at the 2nd and 98th percentile to contain the influence of outliers. We report the
mean and standard deviation (SD) for continuous variables and percentage shares as well as frequencies (freq) for
factor variables and dummies. The main study characteristics include the energy source (electricity, natural gas,
coal, liquefied petroleum gas (LPG), heating oil, unspecified mix), the energy use (heating, cooling, unspecified mix),
the sector (residential, business, unspecified mix), the source of the price change (market vs non-market and mixed)
and the country group (OECD, non-OECD, mix). Statistics for further control variables are shown in Table A.1 in
Appendix A.2.

Regarding energy sources, most estimates refer to electricity and natural gas. Since the
other categories are rather small, in the estimations we lump them into the category “esource
other” for our regression analysis. Regarding the use of energy, only a quarter of estimates
can be clearly separated into heating and cooling uses, while more than 70 percent refer to

an unspecified mix. More than 60 percent of the estimates come from studies that focus
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on market price fluctuations, while the rest look at policy-driven changes or unclear mixed
cases. Estimates for the residential sector and for OECD countries represent the majority
of the sample.

Figure A.2 in Appendix A.3 shows the histograms separately for the short-run and long-
run elasticities as well for the other main study characteristics. The distributions are con-
sistently left-skewed and exhibit a sizeable kink at zero. The variation in the elasticities
might reflect the impact of different study characteristics that we explore in more detail in
Section 4. However, at a first glance, the histograms for subsamples of the data according to
study and data characteristics do not show clearly different patterns. That is why we first
explore the zero kink and left-skewedness of the distribution which might signal publication

selection bias as we explain in the next section.

3. p-hacking and publication selection bias

3.1. Signs of p-hacking

Publication bias may arise from a preference of researchers, referees and editors for sta-

tistically significant findings (a.k.a. p-hacking) (Brodeur et al. ; Brodeur et al. ;

Chopra et al. ) and, in addition, a selection of results that conform with conventional

wisdom, dominant economic theories or the findings of influential publications (Stanley
; Christensen and Miguel ; loannidis et al. ; Andrews and Kasy ).

The histograms of Figure A.2 in Appendix A.3 give a first visual impression of selective
publication of findings with a strong discontinuity around zero. Authors might find positive
elasticities implausible and therefore search for specifications that deliver theory-consistent
negative results. While this behavior might be rational at the individual level, it leads to a
skewed distribution of all estimates as the same plausibility filter may not apply for large
negative elasticities.

p-hacking. In addition, results may be selected for statistical significance. Figure 1
shows density plots for the z-statistics that we calculated from the point estimates and

standard errors of the elasticity estimates, in line with (Brodeur et al. ). Note that our
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Figure 1: z-stat densities with counterfactuals
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Notes: The figure shows density plots of the z-statistics of the short-run (left panel) and long-run (right panel) price

elasticities of demand. Observations with missing exact inference statistics for which we calculated the standard

error from given thresholds are excluded. The figures include histograms (gray bars) as well as the observed kernel

densities (solid black line) together with a counterfactual density (dashed red line). The counterfactual is calibrated

by matching the empirical mass for observations with z < —5, as p-hacking is unlikely in this range (Brodeur et al.
). Vertical dotted lines represent standard significance thresholds at the 10% (*), 5% (**) and 1% (***) level.

dataset includes both positive and negative values, while Brodeur et al. ( ) standardize
their broad range of effect sizes to absolute values. Moreover, for this analysis we exclude
observations with missing exact inference statistics for which we calculated the standard
error from given thresholds, like significance stars. Including such values would bias the
findings in favor of an over-representation of just-significant estimates.

We also follow Brodeur et al. ( ) in calibrating non-central ¢-distributions as coun-
terfactuals. The key assumption is that test statistics above z = 5 represent a part of the
distribution unaffected by p-hacking, since there is little incentive to manipulate already
highly significant results. Through grid search, we find the degrees of freedom and non-
centrality parameter that best replicate this tail behavior. Note, however, that Kranz and

Piitz ( ) in a comment to Brodeur et al. ( ) show that this calibration approach does
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not generally correctly recover the true latent distribution. Our calibrated distribution may
therefore only serve as a rough benchmark for what the full distribution could look like
absent p-hacking.

In both sub-figures of Figure 1, it seems that the overall probability mass is shifted towards
the left. Statistically insignificant elasticities seem to be underrepresented, while there also
appears to be a heaping of estimates within the range of standard significance thresholds.?
While this overall pattern can be spotted from the kernel densities, the light gray histogram
bins do not show strong signals of clear cut-offs in frequencies just below and above the
standard thresholds.

One might ask whether the differences in the densities around specific thresholds are
themselves statistically significant. Figure B.4 in Appendix B.1 shows results of binomial
proportion tests comparing the number of significant vs insignificant observations for wider
or smaller symmetric intervals around the respective threshold, which should be similar in
the absence of p-hacking. The results of this randomization test are less clear-cut than for
the much larger sample of Brodeur et al. ( ). Narrowing the interval leads to a low
number of suitable observations which reduces the power of the tests. In general, selection
on statistical significance seems to be an issue in our sample, but the shift towards statistical

significance seems more gradual over the range of significance thresholds.

3.2. Conditional publication probabilities

Andrews and Kasy ( ) provide an alternative assessment of publication selection, con-
sidering selection both on statistical significance and on the sign of the estimates. Their
test calculates conditional publication probabilities in relation to a reference range of z-
statistics. That is, in comparison to the randomization tests above, the focus is less on
marginal differences in publication probabilities in the proximity of cut-off values, but on

differences of average publication probabilities for typical significance levels.

3 As can be seen from Figure B.1 in Appendix B.1, the heaping is stronger when we do not winsorize, and
stronger still if we also include observations with precision measures based on threshold values as shown
in Figure B.2. On the other hand, the heaping is less visible when we exclude low-quality studies (judged
by coders) and non-preferred studies (judged by authors), see Figure B.3.
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Figure 2: Conditional publication probabilities
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Notes: The figures show relative publication probabilities on the vertical axis in logarithmic scale for typical ranges
of the z-statistics of short-run (left panel) and long-run (right panel) price elasticities of demand displayed on the
horizontal axis. Cutoffs are specified at z = 0 and z = £1.96. The publication probability of observations with

z > 1.96 is normalized to 1. Observations where the standard error was calculated from thresholds are excluded.
Shaded areas show 89% confidence bands. Table B.1 in Appendix B.2 provides the precise numerical results and
inference statistics. Figure B.5 shows the findings for additional cutoffs at the 90%, 95% and 99% significance
thresholds.

Figure 2 shows the results of this test, separately for short- and long-run elasticities.
Table B.1 in Appendix B.2 provides the precise numerical results and inference statistics.
The reference range is a positive estimate that is statistically significant at least at the 5%
level (z > 1.96), to which we assign a publication probability of 1. The other ranges then
receive a relatively larger or smaller publication probability. Note that the vertical axes
present a logarithmic scale such that the steps can be interpreted as factor changes.

Considering the short-run elasticities, the publication probability is about 3 times greater
for a positive but statistically insignificant (at the 5% level) finding. When considering
positive elasticities, there is no preference for statistical significance. Instead, researchers
might rather shy away from significant estimates, if they happen to have an unexpected
positive sign. This is consistent with a preference for theory-conformist results that can
also be seen at the borderline from positive insignificant to negative insignificant estimates.
The publication probability increases by a factor of about 3 at this threshold. Signs of
p-hacking in line with Figure 1 above can be observed as negative statistically significant
findings (at the 5% level) are about 4 times more likely to be published than negative

statistically insignificant elasticities. Overall, observing a negative significant elasticity is

15



25 times more likely than observing a positive statistically significant one. Qualitatively
similar patterns, but quantitatively weaker differences can be observed for the long-run
elasticities, which generally show a greater variance. The steps are quite similar in relative
terms but the overall increase in the publication probability is only half as large. This
might be due to the fact that some of the reported long-run elasticities are derived from
dynamic equations as described in footnote 1. The statistical significance of these long-run
elasticities might thus not be of central concern to the primary study authors.

If we take into account additional standard significance thresholds, like the 10% (z =
+1.65) or 1% level (z = 4+2.58), the single steps are expectedly smaller and the overall stair
shape is less clear cut for the long-run estimates, but the qualitative results hold. As can
be seen in Figure B.5 and Table B.2 in Appendix B.2, the most important thresholds are
the change in sign as well as the 5% level in the negative range, which confirms a preference

for negative statistically significant estimates in the literature.

3.3. Funnel asymmetry

Another established approach to detecting publication selection bias is a funnel plot — a
scatter plot showing the effect size on the horizontal axis and the precision of the estimate
(the inverse of the standard error, 1/SFE) on the vertical axis. According to standard econo-
metric assumptions with random error, observations should scatter symmetrically around
the most precise values (at the top of the funnel) which should be closest to the true effect.
Publication selection bias, however, will lead to an asymmetric funnel due to a correlation
between the standard error and the point estimate (Stanley and Doucouliagos ; Egger
et al. ).

The mechanisms leading to this correlation can be outlined as follows: When the true
value is small and negative, low-powered estimates with large standard errors sometimes
yield null results or positive elasticities. If these outcomes are deemed implausible or unlikely
to be published, researchers might pursue different specifications or datasets. Consequently,

specifications yielding more negative point estimates might address large standard errors,
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Figure 3: Funnel plot: precision vs effect size
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Notes: The figures present funnel plots, which are scatter plots of the effect size on the horizontal axis and the
precision of the estimate (the inverse of the standard error, 1/SE) on the vertical axis. The left panel includes the
short-run funnel, while the right panel shows a long-run funnel plot. For a better visual inspection of thresholds, the
graph marks all statistically significant estimates (at the 5% level) in blue rings and the statistically insignificant
values as gray dots. The red solid vertical lines represent the unweighted average elasticity of the short and
long-term, respectively. An asymmetric funnel as well as a discrepancy between the unweighted average and the
most precise estimates at the top of the funnel may point to publication selection bias. Figure B.6 in Appendix B.3
shows the same funnels with markers for observations that were deemed inferior by the primary study authors and
quality concerns by us.

whereas small negative estimates can achieve significance via smaller standard errors through
specific choices. Statistically significant positive results may be disregarded on theoretical
grounds. All these scenarios contribute to a negative correlation between standard errors
and point estimates.

Figure 3 shows the funnel plots for the winsorized estimates separately for the short and
long-run elasticities. We mark estimates that are statistically significant at the 5% level as
blue rings and the insignificant ones as gray dots. The funnels are clearly asymmetric with
many more low precision (though statistically significant) estimates on the left-hand side.
Moreover, the center regions of the funnels are less dense for positive elasticities. The tops of
the funnels with the most precise estimates are close to zero and on average slightly negative
both for the short and long run. The tops of the funnels are much closer to zero than the
unweighted average of the estimates, displayed by the red solid vertical lines. As noted
above, we flagged estimates that were deemed inferior by the primary authors and those

with quality concerns according to our assessment. Figure B.6 in Appendix B.3 highlights
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these estimates in the funnel plots. Inferior estimates are more often large and positive than
other observations so they conglomerate on the right-hand side of the funnel. Those with

quality concerns often come with high precision and heap on the upper end of the graph.

3.4. Tests of publication bias

The meta-analysis literature has advanced a series of statistical procedures designed to
identify potential publication bias and ascertain an unbiased true effect (Stanley ;
Andrews and Kasy ; Stanley and Doucouliagos ). Formally, funnel asymmetry can
be evaluated by performing a regression of effect sizes on the standard error. For this test,

we compute variations of the following standard model:

gij = Bo + B1SEij + vij (1)

Here, ¢;; stands for the estimated standardized elasticity ¢ from study j. SE;; denotes
its standard error, and v;; is the random sampling error. This basic version is known as
the Funnel-Asymmetry-Test-Precision-Effect-Test (FAT-PET) (Egger et al. ; Stanley

). In the absence of selection bias and other distortions, estimated effects are expected
to be randomly dispersed around the true value. If 3 is found to be significantly different
from zero, it may indicate publication selection bias. Controlling for publication bias and
sampling error, 3y should reflect the mean effect, adjusted for bias, which is our primary
coefficient of interest.

The preferred variant is to estimate Eq. (1) with weighted least squares (WLS), using
the inverse of the variances (1/SE?) as weights to deal with the observed heteroskedasticity
(Stanley and Doucouliagos ). The WLS assigns more weight to more precise studies as
these should be less prone to publication selection. Alternatively, Stanley and Doucouliagos
( ) propose an unrestricted weighted least squares (UWLS) test, which does not contain
p1SE;; from Eq. (1) and corrects for publication bias via inverse variance weights only.
However, a simple OLS version and a variant with study fixed effects are also frequently

estimated for robustness (e.g. Havrének et al. ). In addition, Stanley and Doucouliagos
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( ) show in Monte-Carlo simulations that Eq. (1) including the quadratic form SFE?
instead of the linear SE is often a better representation of the relation between the standard
error and the point estimate in the presence of publication bias and a non-zero underlying

effect. This specification is called precision effect estimate with standard error (PEESE).

Table 2: Linear publication bias tests

short run  (1)UA  (2)UWLS (3)OLS (4)FE (5)PET (6)PEESE (7)Median
B1 -0.917 -0.792 -1.148 -2.939 -2.414
pubbias (0.148)  (0.143)  (1.089)  (1.047) (1.266)
Bo -0.283 -0.148 -0.169 -0.184 -0.134 -0.146 -0.130
mean (0.0236) (0.0488)  (0.0206) (0.0179) (0.0612) (0.0492)  (0.0233)
Obs. 2680 2680 2680 2680 2680 2680 230
Adj. R? 0.000 0.195 0.156 0.112 0.004 0.002 0.011
long run ~ (1)UA  (2)UWLS (3)OLS (4)FE (5)PET (6)PEESE (7)Median
51 -0.471 -0.471 -1.764 -1.639 -3.963
pubbias (0.142)  (0.138)  (0.770)  (0.553) (1.442)
Bo -0.439 -0.232 -0.335 -0.335 -0.212 -0.231 -0.0765
mean (0.0395) (0.0670)  (0.0364) (0.0301) (0.0753) (0.0673)  (0.0340)
Obs. 2294 2294 2294 2294 2294 2294 191
Adj. R? 0.000 0.368 0.060 0.065 0.012 0.001 0.033

Notes: The table shows tests for funnel asymmetry according to different versions of Eq. (1). The upper panel
considers short run elasticities and the lower panel the long-run elasticities. Column (1) shows the unweighted average
(UA) from a simple regression on the constant Bp. Column (2) estimates the unrestricted weighted least squares
(UWLS) average, which is a WLS version of column (1) with inverse variance weights (Stanley and Doucouliagos

). Column (3) shows estimates of Eq. (1) as a simple OLS without weights and column (4) does the same, adding
study fixed effects (FE). Column (5) shows the standard FAT-PET test of Eq. (1) with inverse variance weights.
Column (6) (PEESE) does the same, but uses the SE? instead of the linear version. Column (7) resembles column
(5), but uses only the median estimate per study. Standard errors in parentheses are clustered at the study level,
except for column (7). Table B.4 in Appendix B.3 replicates these tests when excluding estimates that were deemed
inferior by the primary study authors and those flagged with quality concerns by us. Table B.3 in Appendix B.3
replicates the PEESE test for different levels of winsorization of the data.

Regression results from the test variants are given in Table 2, where the upper panel
focuses on short-run elasticities and the lower panel on long-run elasticities. Column (1)
shows the unweighted average (UA) to facilitate comparison. In line with standard guide-
lines, we cluster standard errors at the study level since multiple estimates from one primary
). Column (7) shows estimates when only

study might not be independent (Irsova et al.

picking the median estimate per study, which can be a short or a long-run estimate.
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Note that almost all tests in columns (3) to (7) find fB; to be statistically significant
and negative, pointing to funnel asymmetry and an over-representation of large negative
elasticities. The corrected means, 3y in columns (2) to (7), are all closer to zero than the
unweighted average in column (1). Corrected short-run elasticities range from -0.13 to -0.18.
Corrected long-term elasticities tend to be somewhat larger on average and more dispersed
in the range of -0.08 to -0.34. The relative correction factor in comparison to the naive
average is around 25 to 80 percent — a range that is quite common in many meta-analyses
(Gechert et al. ).

We robustify these baseline findings in several dimensions. First, we ask whether the
choice of the winsorization level drives our results. Table B.3 in Appendix B.3 shows that
the PEESE results are robust to different winsorization levels, except for the case of no
winsorization at all. In this case, some outliers with very high precision receive a large
weight in the WLS estimation. Winsorization contains their influence and leads to more
conventional and conservative estimates. Second, Table B.4 in Appendix B.3 repeats the
analysis based on a sample that excludes inferior estimates according to the authors of the
primary studies and excludes estimates for which we raised quality concerns. The findings
are qualitatively similar, but the resulting corrected means are even closer to zero.

The variants of Eq. (1) above assume a linear (or quadratic) relation between the standard
error and the point estimate. However, if publication bias is not monotonous across the full
distribution of point estimates but is concentrated on estimates in the proximity of standard
significance thresholds, the relation between the standard error and the point estimate might
be more complex. Moreover, Irsova et al. ( ) show that if p-hacking is performed on
the standard error (instead of the point estimate), then Eq. (1) might suffer from reverse
causality. Alternative nonlinear tests of publication bias can account for these complications.

The test for conditional publication probabilities by Andrews and Kasy ( ) also pro-
vides an estimate of the underlying mean beyond bias (AK). Moreover, Bom and Rachinger

( ) consider a kinked version of the FAT-PET regression, providing for the case that

20



results are more likely to be published when they pass a certain significance threshold.*
Ioannidis et al. ( ) develop an estimate of the underlying effect based on the weighted
average of only the adequately powered primary estimates (WAAP). They argue that highly
powered primary estimates are less likely to be p-hacked.

Similarly, the test of Furukawa ( ) focuses on a subsample of the most precise esti-
mates, the so-called stem of the funnel plot. This subsample is determined by minimizing
the trade-off between the variance per observation (which shrinks with an increasing sample)
and publication bias (which rises with a larger sample). Finally, Irsova et al. ( ) propose
a two-stage least squares (2SLS) regression, which they coin the meta-analysis instrumental
variable estimator (MAIVE), where the inverse of the square root of the sample size of the
primary estimates instruments the standard error in Eq. (1). The sample size could be a
valid instrument as it is usually given to researchers due to limited data availability and
should be highly negatively correlated with the standard error. Under these conditions,
the second stage regression would provide an estimate of the mean elasticity, corrected for
publication bias in the point estimates.

The results of these tests, shown in Table 3, are largely consistent with the linear tests in
Table 2. The resulting means beyond bias for the WAAP method are quite similar to the
PEESE estimates. The AK tests even find smaller underlying elasticities, close to zero in the
short run and slightly negative in the long run. The Furukawa ( ) method reports large
negative effects for the short run and close-to-zero effects for the long run, but the number
of observations selected for the stem is extremely small, so the results may be interpreted
with caution as they likely suffer from small sample issues. (see Figure B.7 in Appendix B).
The MAIVE 2SLS approach finds somewhat larger corrected effect sizes. However the
instrumentation is probably too weak in our sample as the first-stage F-statistics are below
conventional thresholds and much smaller than the threshold of 100 recommended by Irsova

et al. ( ). Again, if we exclude the inferior estimates and those with quality concerns,

“Note that the Bom and Rachinger ( ) endogenous kink test collapses to the simple FAT-PET test if
the test does not signal a significant nonlinearity, which is the case in our sample. Thus we do not report
the results here.
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Table 3: Nonlinear tests — underlying effects

short run (1)AK (2)WAAP (3)Stem (4)MAIVE
mean beyond bias 0.028 -0.146 -0.6793 -0.226

(0.014) (0.0496) (0.3529) (0.100)
Obs. 2437 1335 3 2529
1st stage F' 3.674
long Tun (1)AK (2)WAAP (3)Stem (4)MAIVE
mean beyond bias -0.109 -0.230 -0.0137 -0.298

(0.045) (0.0685) (0.1418) (0.0919)
Obs. 1850 714 7 2213
1st stage F' 7.270

Notes: The table shows the corrected effects according to further tests of publication bias. The upper panel considers

short run elasticities and the lower panel the long-run elasticities. Column (1) refers to the test of conditional
publication probabilities by Andrews and Kasy ( ) (AK). Column (2) refers to the test by Ioannidis et al. ( )
based on the weighted average of only the adequately powered primary estimates (WAAP). Column (3) refers to the
test of Furukawa ( ), which focuses on a subsample of the most precise estimates, the ‘stem’ of the funnel plot.
We distrust the test results due to the very small number of observations included. Column (4) (MAIVE) shows the
second stage of a two-stage least squares (2SLS) regression, where the inverse of the square root of the sample size
of the primary estimates instruments the standard error in Eq. (1) (Irsova et al. ). The first stage F-statistics
are below recommended thresholds, so we distrust the estimates. Standard errors in parentheses are clustered at the
study level, except for column (3). Table B.5 in Appendix B.3 replicates these tests when excluding estimates that
were deemed inferior by the primary study authors and those flagged with quality concerns by us.

the corrected means are even closer to zero as can be seen from Table B.5 in Appendix B.3.
Also, the Furukawa test on short-run elasticities is more in line with the other test results
in the sample without inferior estimates and quality concerns.
Which of the multiple test variants are the preferred ones? FAT-PET and PEESE are
established standards in most meta-analyses that assess publication bias (Havranek et al.
). A two-step procedure (PET-PEESE) detects whether there is a statistically sig-
nificant genuine effect Sy from the FAT-PET. If so, Sy from the PEESE test is typically
considered to be closer to the true underlying mean estimate. We follow this procedure
and consider the PEESE specification as our baseline here and also in the multiple meta-
regressions of Section 4. At any rate, considering the broad picture that emerges from the
battery of tests, publication bias seems prevalent, and the range of corrected estimates is
much lower than could be inferred from the simple average in our sample or a qualitative

review from an Al
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4. Heterogeneity

This section investigates factors that might explain the variation in the reported price
elasticities. As shown in Table 1, estimates can be classified by a number of study and
estimation characteristics. We cover important dimensions of heterogeneity with a focus on
different energy sources and uses, sectors, data and estimation choices, as well as publica-
tion characteristics. Subsection 4.1 provides a subsample analysis, Subsection 4.2 presents
a frequentist multivariate meta-regression model and Subsection 4.3 uses a Bayesian model
averaging approach to test the robustness of our main results with respect to model uncer-

tainty. Subsection 4.4 discusses a best-practice specification.

4.1. Subsample analysis

This section considers the corrected and uncorrected estimates from Section 3 for important
subsamples of our dataset. Figure 4 shows short-run and long-run unweighted averages and
estimates of the underlying effect based on the PEESE test. We chose the PEESE test as
it is widely used and the correction factor for publication bias is somewhere in the middle
of all methods. We consider subsamples for the largest groups of energy sources (electricity
and natural gas), country groups (OECD vs non OECD), sectors (residential vs business)
and regarding journal ranking (top journal publication vs any other publication).

Comparing energy sources, price elasticities for electricity are somewhat stronger than
for natural gas both in the short and long run, and the correction for publication bias is
rather similar (about 1/3 of the effect size remains). Considering country groups, it turns
out that uncorrected short-run estimates for OECD countries are smaller than for non-
OECD countries, while the long-run estimates are rather similar. However, the measure of
publication bias is stronger for OECD-country estimates such that the corrected effect size
is much closer to zero both in the short and long run.

Looking at the differences between the sectors, the uncorrected effects are relatively sim-
ilar for the residential and business sectors both in the short and long run. However,

publication bias seems stronger in estimates for the business sector and the correction is
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Figure 4:
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Notes: The figures present the unweighted averages (UA, dotted lines) and corrected effect sizes (according to the
PEESE method, solid lines) for short and long-run elasticities for major subsamples: energy source (electricity and
natural gas), country group (OECD and non OECD), sector (residential and business), publication type (top

journals vs other).
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more than twice as strong. A similar effect can be seen for publication outlets. Uncorrected
effects point to more negative elasticities in top journals both for the short and long run.
However, publication bias seems to be stronger in high-ranking journals and after correction,
the effects sizes are similar for the short run and even smaller for the long-run.

In general, the subsample analysis shows that publication bias seems to be a recurrent
issue in most of the subsamples. Moreover, the corrected elasticities are more homogeneous

among the considered subgroups than the uncorrected values.

4.2. Multivariate meta regression

In what follows, we test the impact of modeling and sample choices as well as publication
characteristics in a multivariate meta-regression (MMR) framework, while also controlling
for publication bias via the standard PEESE test as laid out in Section 3 above. That is,
we modify Eq. (1) to include the squared standard error SEZZJ- of estimation 7 of study j,
as well as a vector X;; of the moderator variables that capture the estimation and study
characteristics introduced in Table 1. We can thus write the MMR model as follows (again

estimated as WLS with inverse variance weights and with clustering at the study level):
gij = Bo + PLSE}; + BaXij + vij (2)

X;; primarily contains dummy variables or categorical variables of which one category is
omitted from the regression. Thus, in the MMR, Sy reflects the corrected effect sizes of
the omitted reference categories, which are to be defined. In our baseline specification, we
include the time horizon, the energy sources and uses, the sector, the source of the price
change, and the considered country group as explanatory variables in X;;. We select a
short-run elasticity of electricity demand in the residential sector for an unspecific mix of
heating / cooling after a market-price change in an OECD country as the reference. These
references are chosen since they represent the largest groups in our sample. Due to the
linear regression form, the choice of one omitted category does not affect the coefficients of

other variables in 83. However, it shifts the intercept By, which cannot be interpreted as
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the general mean beyond bias anymore. (1 still estimates the strength of publication bias
when controlling for study characteristics.

Table 4 shows the regression results for various versions of X;; based on the full sample.
Column (1) contains our baseline specification including factor and dummy variables of the
time horizon of measurement, the main categories of energy sources, the energy use, the
sector, the source of the price change and the country group. Column (2) shows a parsimo-
nious specification in accordance with the PAP. Further columns are based on column (1)
and include additional control variables concerning characteristics of the data used in the
primary studies, their estimation methods and publication characteristics. Those additional
coeflicients are shown in Table C.1 in Appendix C.

The results for the baseline moderator variables are similar across the different specifica-
tions. The coefficient of the squared standard error remains large and highly statistically
significant, irrespective of the list of included control variables. Thus, our assessment of pub-
lication bias does not seem to be an artifact of omitted variable bias. Short-run and long-run
estimates do not differ strongly when taking into account other covariates. Regarding en-
ergy sources, natural gas tends to show less negative elasticities, in line with Figure 4 above.
The other sources (like coal, heating oil, LPG) have somewhat more negative elasticities on
average, about double the size of the underlying reference value.

There are no strong and robust differences for the elasticities of heating and cooling, the
source of the price change and among the country groups. In some specifications, non-
OECD countries tend to exhibit more negative demand reactions to price increases, but the
results depend on the inclusion of further control variables and are uncertain. The sectoral
differences are more noticeable: elasticities tend to be weaker in the business sector than
in the residential sector and weakest for the mix of sectors which includes assessments for
whole economies.

In Table 5, we consider the baseline specification for various subgroups of our sample
regarding the time horizon, the main energy sources and the sectors. Columns (1) and (2)

separate the effects for short and long-run estimates. Columns (3) and (4) look at the two
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Table 4: Multivariate meta regression, baseline and robustness checks

(1) base (2) pars  (3) data (4) estim (5) public  (6) all

Constant -0.177 -0.109 -0.140 -0.143 -0.193 -0.206
(0.0591)  (0.0538) (0.0799) (0.0544) (0.0941) (0.111)

SFE? -2.311 -2.098 -2.525 -2.942 -2.163 -2.585
(0.440) (0.473) (0.422) (0.430) (0.421) (0.413)

long run -0.0160  -0.0454 0.00129 0.0153 -0.0227  -0.0474
(0.0588)  (0.0689) (0.0447) (0.0402) (0.0489) (0.0349)

natural gas 0.115 0.0511 0.0305 0.121 0.0309 0.0684
(0.0556) (0.0452) (0.0556) (0.0485) (0.0589) (0.0512)

esource other -0.160 -0.148 -0.151 -0.135 -0.212 -0.172
(0.0777)  (0.0734) (0.0635) (0.0555) (0.0664) (0.0497)

heating -0.0424 0.0202 0.0145 -0.00117 0.0296
(0.0596) (0.0593) (0.0434) (0.0606) (0.0427)

cooling 0.100 0.163 0.117 0.0307 0.140
(0.108) (0.126) (0.0862) (0.106) (0.0954)

non-market, mix 0.0279 -0.0118 0.00514 -0.0420 0.000373  -0.0431
(0.0844) (0.0914) (0.0727) (0.0578) (0.0799) (0.0554)

non OECD -0.156 -0.137 -0.0716 -0.00633 -0.144 0.0252
(0.100) (0.118) (0.0843) (0.0636) (0.0926) (0.0565)

mixed countries 0.0294 0.163 0.0309 -0.0247 0.0542  0.00817
(0.0576)  (0.0717) (0.0524) (0.0512) (0.0574)  (0.0509)

business 0.116 -0.0123 0.123 0.0858 0.0617
(0.0525) (0.0499) (0.0373) (0.0494) (0.0512)

sector mix 0.287 0.127 0.181 0.328 0.190
(0.0744) (0.0694) (0.0547) (0.0703)  (0.0551)

Further controls none none data char. estim. char. publ. char. all
Obs. 4974 4974 4970 4974 4974 4970
Adj. R? 0.247 0.159 0.324 0.417 0.320 0.488

Notes: The table shows results of WLS regressions (with inverse variance weights) according to Eq. (2) with the
PEESE correction for publication bias and including moderator variables in X. Moderators are primarily categorical
factor variables of which one category is omitted due to perfect collinearity and is reflected in the intercept. The
reference categories are given in italics. Column (1) uses our baseline specification and includes: the time horizon of
measurement (short vs long run), the energy source (electricity, natural gas, other), the energy use (heating, cooling,
miz), the sector (residential, business, mix), the source of the price change (market-based vs non-market and mixed),
the country group (OECD, non-OECD, mix). Column (2) shows a parsimonious specification in accordance with
the pre-analysis plan. Further columns are based on column (1) and include additional control variables. Column
(3) includes controls characterizing the data used in the primary studies. Column (4) includes controls concerning
estimation methods in the primary studies. Column (5) includes controls related to publication details. Column (6)
combines all of the former. The additional coefficients are shown in Table C.1 in Appendix C. Standard errors in
parentheses are clustered at the study level.
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largest groups of energy sources, electricity and natural gas, respectively. Columns (5) and
(6) consider the residential and business sector separately.

Most of the coefficients are relatively similar across subgroups and in line with Table 4.
Importantly, the measure of publication bias (SE?) is statistically significantly negative and
large for all the subgroups. When looking at the different energy sources in combination
with sectors, the weaker elasticities for natural gas seem to be driven by the residential
sector, while the business sector’s lower price sensitivity is specific to electricity demand.
The finding of higher price elasticities in non-OECD countries seems to be specific to short-
run responses, electricity consumption, and the residential sector. This makes sense since
households in lower-income countries face stronger budget constraints and should be more
price sensitive in the short run with respect to basic needs for a relatively expensive good
like electricity, while their options to switch to more efficient appliances are more limited.
Heating and cooling do not involve consistently different elasticities in comparison to the
reference mix category. The large coefficient for cooling in the business sector is likely due
to a small sample bias (there are only 18 such observations in our sample).

Table C.2 in Appendix C also uses the baseline selection of control variables and shows the
findings for subsamples with different quality criteria (preferences of the primary authors
or our quality concerns, identification strategies or accounting for income and cross-price
effects). Again, there is a strong signal for publication bias in all sample selections and it
seems to be stronger, when considering only the preferred estimates of the primary study
authors. For some subsamples, single coefficients change considerably, but often this is
related to categories with a small number of observations. After all, the results are largely

robust when looking at these smaller samples with very different selection criteria.

4.3. Bayesian model averaging

Given the large amount of possible control variables there is considerable model uncer-
tainty, which we address by Bayesian Model Averaging (henceforth, BMA). The BMA runs

a universe of regression models including or excluding some of the moderator variables. In
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Table 5: Multivariate meta regression, group-wise samples

short run  long run  electricity natural gas residential business
Constant -0.154 -0.169 -0.175 -0.0554 -0.186  -0.0295
(0.0530)  (0.0634) (0.0588) (0.0760) (0.0688)  (0.0182)
SE? -2.546 -1.958 -3.352 -1.706 -2.406 -2.446
(0.798) (0.439) (0.639) (0.484) (0.602) (0.582)
long run -0.0351 -0.0568 0.00702  -0.0290
(0.0489) (0.0458) (0.0898)  (0.0259)
natural gas 0.0732 0.0719 0.191 0.0259
(0.0821)  (0.0417) (0.0826)  (0.0514)
esource other -0.295 -0.0708 -0.154 -0.108
(0.104)  (0.0739) (0.0975)  (0.0569)
heat 0.0148 -0.138 -0.115 0.0241 -0.0535 -0.177
(0.0803)  (0.0702) (0.0615) (0.0808) (0.0861)  (0.0619)
cool 0.125 -0.0949 0.0527 -0.0729 0.123 -0.939
(0.121) (0.135) (0.0998) (0.0576) (0.111)  (0.0449)
non-market 0.0280 -0.132 0.109 0.0208 0.0320  -0.0813
(0.0924) (0.142) (0.0881) (0.0740) (0.0946)  (0.0872)
non OECD -0.202 -0.0189 -0.237 -0.0902 -0.212 0.0420
(0.111) (0.167) (0.113) (0.0887) (0.117)  (0.0941)
country mix 0.0291  0.00791 -0.0596 0.0109 0.0481 0.0642
(0.0682)  (0.0619) (0.0714) (0.0651) (0.0837)  (0.0725)
business 0.0939 0.114 0.155 -0.0589
(0.0579)  (0.0712) (0.0557) (0.0473)
sector mix 0.379 0.188 0.295 0.0793
(0.0859)  (0.0726) (0.100) (0.0927)
Obs. 2680 2294 2748 1250 3157 1240
Adj. R? 0.347 0.183 0.232 0.073 0.234 0.171

Notes: The table shows results of WLS regressions (with inverse variance weights) according to Eq. (2) with the
PEESE correction for publication bias and including moderator variables in X. See Table 4 for description of variables.
Column (1) and (2) show subsamples for short and long-run elasticities, respectively. Column (3) and (4) show
subsamples for the most frequent energy sources, electricity and natural gas, respectively. Columns (5) and (6) look
at the residential and business sector subsamples, respectively. Standard errors in parentheses are clustered at the

study level.
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principle, model uncertainty generates 2" possible subsets based on m, the number of mod-
erator variables. Given the expected large amount of moderator variables, a full analysis
of all models would be practically infeasible. Thus we use a Markov-Chain Monte-Carlo
process with Metropolis-Hastings algorithm (Zeugner and Feldkircher ) focusing on the
models with the highest probability. The result of the BMA is a weighted average of all these
regressions, where the weights correspond to the posterior model probabilities according to
the relevance of moderators across specifications. For each moderator variable we receive
a posterior inclusion probability (PIP). See Figure C.1 and Table C.3 in Appendix C.2 for
the BMA results.

Our core finding of the relevance of publication bias, represented by a PIP of 1 for
SE? (PEESE) and a negative coefficient across models, is robust to BMA. Moreover, a
publication-bias-corrected value of -0.166 for the BMA average of the price elasticity for the
reference group is fairly in line with our previous MMR results. Regarding the relevance
of moderator variables, the BMA results point to special importance of the time horizon,
giving credence to our approach to split the sample into short and long-run elasticities.

Of the other moderators from our baseline MMR, in particular the energy use seems
important from the BMA. In addition, the BMA results highlight the relevance of the macro-
micro dimension, the frequency and dimension of the data, the role of estimation methods,
distinguishing top-journal publications as well as the primary studies’ authors assessments
of estimates. All of the above-mentioned variables have a high PIP and are unambiguous
regarding their sign across specifications. Note, however, that BMA is primarily useful
for prediction purposes, and less for causal inference. Therefore, a high PIP does not
necessarily reflect a direct causal relationship. Instead, the BMA primarily provides a

model uncertainty-robustness check of our main results.

4.4. Best practice

Our results document some variation in the underlying elasticities depending on study and

estimation characteristics. One might therefore ask for a best-practice point estimate from
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the meta-analysis that can guide modelers and policy makers. The specification for the best-
practice estimate is informed by characteristics that are relevant on theoretical grounds as
well as by the inclusion probabilities according to the BMA exercise. The estimate is based
on Eq. (2) with a PEESE model of publication bias and is separately estimated for the
short-run and long-run elasticities.

From a theoretical point of view, we include the variables in our baseline specification
according to Table 4. Moreover, we consider a sophisticated identification method, income
and cross-price controls, the journal rank, the number of citations and primary author
preferences as important signals of best practices. In addition, we include a dummy for
macro vs. micro estimates, the data dimension (cross section vs. times series vs. panel),
the data frequency (sub-annual vs. (multi-)annual), a dummy for system estimations and
a dummy for dynamic estimations as important variables according to the BMA’s inclusion
probabilities. We use the subsample without inferior estimates and excluding those with
quality concerns in line with Figure B.6.

The best practice elasticities are linear predictions based on the PEESE multivariate
meta regression, where we plug in sample maxima for variables reflecting best practice
in the literature, sample minima for variables reflecting departures from best practice, and
sample means for variables where we cannot clearly determine best practice. A best-practice
estimate should have high precision, should be identified well, and should account for income
and cross-price effects. It should be published in a top journal, the study should have the
maximal number of citations in our sample, it should be preferred by the primary authors
and should not be a byproduct of the study. As discussed above, these latter criteria
might be even more strongly related to publication bias. However, since we already correct
for publication bias, the chosen characteristics should rather represent estimates of higher
quality. Finally, we impute sample averages for sample year and frequency, micro or macro
studies, and estimation approaches. For the headline figures, we also use the sample-average
shares of the energy source, energy use, source of the price change, country group and sector

categories.
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Table 6: Elasticities from a synthetic study representing best practices

Short run Long run
(1) Elasticity (2) 95% CI (3) Elasticity (4) 95% CI
all -117  ]-.026, -.207] -176  [-.012, -.341]
electricity -077 [ .010, -.164] _189  [-.010, -.369]
natural gas -.170  [-.053, -.288] -.170  [-.010, -.329]
heating ~.084 [ .016, -.185] _234  [-.046, -.422]
cooling ~205  [-.096, -.313] ~218  [-.010, -.420]
OECD -.113  [-.025, -.200] -.206 [-.041, -.370]
non OECD _135  [-.024, -.245] ~.096 [ .106, -.298]
residential -131  [-.042, -.220] -.235  [-.035, -.436]
business 124 [-.021, -.227] 125 [.029, -.279]

Notes: The table shows linear predictions of elasticities based on Eq. (2) of the sample without inferior estimates
and observations with quality concerns. We plug in SE? = 0 (maximal precision), identified=1, income-control=1,
cross-price control=1, topjournal=1, number of citations=max, preferred=1, byproduct=0. For the other moderator
variables we chose sample averages. Columns (1) and (3) show the point estimates of the predictions for short and
long run elasticities, respectively, and columns (2) and (4) the related 95 percent confidence intervals (CI).

Table 6 shows the resulting elasticities. The headline value in the first row represents the
best-practice average elasticity for any heating or cooling purpose from any energy source
in an average country and in any sector. For such a synthetic estimate, the elasticity is ca.
-0.12 in the short run and -0.18 in the long run, well in the middle of the range of estimates
from the various tests above.

The other rows show estimates for specific cases of the main energy sources, uses, country
groups and sectors. Note that some cases are above or below the average estimate, but do
not deviate strongly. The predicted values fall within the said range of -0.05 to -0.2 for the

short run and -0.1 to -0.3 for the long run.

5. Conclusion

This paper provides a meta-analysis of more than 400 primary empirical studies that esti-
mate the price elasticity of energy demand in buildings. The dataset contains almost 5000
estimated elasticities from different fossil fuels and energy sources, countries and regions,

time periods, sectors and sources of the price change.

32



We have shown that a synthesis based on the naive average of estimated elasticities
would be consistent with previous literature reviews and an assessment made by ChatGPT.
According to the simple average, heating and cooling would be necessities, though with
still sizeable elasticities of about -0.3 in the short run and -0.45 in the long run, confirming
hypothesis [H1].

However, such a conclusion would be misleading, since the literature suffers from pub-
lication bias according to a battery of established tests and in various subsamples. If we
account for this problem, the resulting elasticities are considerably smaller than the conven-
tional wisdom, in a range of -0.05 to -0.2 in the short run and -0.1 to -0.3 in the long run,
confirming [H2].

Turning to factors that explain the variation in effect sizes, we do not detect relevant
differences of elasticities after market-induced vs. non-market-induced price changes, re-
jecting [H3], but this topic might deserve a more detailed investigation than we can provide
within the scope of this paper. We find a mixed picture regarding the elasticities of different
energy sources and uses [H4]: in some specifications and subsamples, natural gas demand is
somewhat less elastic than electricity demand and a mix of other sources (coal, oil, LPG),
though not in best practice predictions and the differences are usually small. Heating and
cooling do not exhibit robustly different elasticities either and the differences are usually
small. When considering sectoral differences, however, residential energy demand consis-
tently turns out to be slightly more elastic than business energy demand, in particular in
the long run [H5]. In general, in line with our expectations, long-run elasticities exceed
short-run elasticities, however, the differences are not large either [H6]. Differences between
OECD and non-OECD countries are limited and vary with the chosen specification [H7].
There is only a negligible linear relation between the average sample year and the reported
elasticity [H8], but country and time dependencies should be considered in more detail
with more granular data. Study designs are partly correlated with the reported elasticities
[H9]. However, in comparison to the corrections for publication bias, the impact of these

heterogeneities is limited.
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The estimated small short and long-term elasticities may not come as a big surprise
when considering that heating and cooling energy in buildings is a necessity with difficult
or costly substitution possibilities, partly delayed price signals to renters in ex-post service
charge settlements, and often monopolistic market structures. They are also consistent with
the observed consumption responses to recent energy price shocks (Ruhnau et al. ). A
back-of-the-envelope calculation for Germany in 2022, featuring a rise of +143 percent in
the natural gas retail price and a demand reduction of ca. -11 percent, notwithstanding
weather effects, income elasticities, consumer fears of supply shortages, or ethical considera-
tions, would imply a short-term elasticity of -0.08 (Jamissen et al. ), consistent with our
findings. Likewise, Reiss and White ( ) report an 11 percent fall in electricity consump-
tion of San Diegan households in the six months after an unexpected and rapid market price
shock of 4130 percent in the summer of 2000, pointing to a short-run elasticity of -0.08,
which could have been double the size at an annual horizon of measurement.

Our results have implications for expectations of the workings of market mechanisms and
the steering effects of pricing policies. The self-correcting effects after market price shocks
through the demand side might be weaker than previously thought. Planning the security
of supply in crisis situations and forecasts of energy-price dynamics should take into account
a weak demand elasticity in this sector.

Likewise, CO2 pricing may have a less-than-expected steering effect through price signals
alone. This could imply a prolonged trajectory of higher CO2 prices if demand responds
sluggishly while certificate supply is shortened in line with sector targets. Climate policies
accompanying CO2 prices or those that facilitate stronger price elasticities may turn out to
have a better cost-benefit relation under such conditions of low demand responsiveness.

However, CO2 pricing and other administered price changes can induce different consumer
reactions than market price fluctuations, as discussed in Andersson ( ), Basaglia et al.
( ), Broin et al. ( ), Edelstein and Kilian ( ), and Grieder et al. ( ), which
deserves more detailed investigation. Our rich meta-data set is well suited to be extended

in this direction in future research. Moreover, other country and time specifics could be
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analyzed by merging our dataset with more granular data on, e.g., temperatures, energy

systems, CO2 price levels.
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Appendix A Further information on the search and data collection

A.1 Search and sample selection

Figure A.1: PRISMA Flow Chart

Eligibility Screening Identification

Included

Records identified from: Records removed before screening
. (n=8,835)
e EconlLit (23,948) R duplicat d
easons: e.g. duplicate records;
* Google Scholar (6,910) published before 1980, no Abstract,
Databases (total): 30,858 book or book chapter
Records excluded Title and Abstract screening
(n=20,074) ' (n=22,023)

Records not assessed due
to time constraint

(n=608)
v
Full-text articles .
. Full-text articles assessed for
excluded, with reasons <€—— eligibility (n=1,341)

(n=920)

|

Total studies included in the meta-
analysis (n=421)

Figure A.1 provides a flow chart of the search, selection and screening process.

searched for studies in Google Scholar and EconLit (via EBSCO Host) and completed the
search on January 25, 2023. Afterwards, we corrected for duplicates and added missing

bibliographic information, which resulted in 22,023 unique and complete entries, finished

on March 3, 2023.
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These studies entered into title and abstract screening assisted by ASReview (van de
Schoot et al. ), an open-source artificial intelligence (AI) tool that iteratively sorts
entries based on previous decisions of researchers to mark similar studies as potentially
relevant. Importantly, the decision about eligibility of any particular study is taken by the
researcher, not by the AI. We performed a pilot run on a random 1% sample of entries to
predict the expected share of truly relevant papers in all entries to determine statistical
thresholds (in line with van Haastrecht et al. ) for stopping the screening as soon as
the flow of relevant entries runs dry. After this pilot run, we finalized and registered the
pre-analysis plan on March 10, 2023.

Two screeners then independently went through thousands of titles and abstracts and
stopped screening on March 31, 2023. We included studies that were considered as eligi-
ble by at least one screener, leading to 1,949 potentially relevant studies for the full-text
screening phase. This strongly outnumbered our predictions such that we suspected to run
into our pre-determined time-resource constraint for the full-text screening (October 31,
2023). Thus, to avoid biases in the final dataset we randomized the order of screening and
finally also extended the full-text screening and coding until January 31, 2024. At this
point we needed to stop the full-text screening, but still could not assess 608 studies of
which we suspect around 200 additional relevant studies. Due to binding time and resource
constraints, we were unable to consider additions from either previous (meta)-studies or by
other methods, such as backwards snowballing.

Nevertheless, we consider our final sample of 421 studies to be a representative random
subsample of the true population. Two co-authors collected ca. 50% of the data each.
Three co-authors double-checked around 70% of the collected data to correct potential

coding errors and inconsistencies. The list of included papers can be found in Appendix D.

A.2 Additional descriptive statistics

In Table 1 in the main text we report descriptive statistics of the elasticities, their standard

errors and the main study characteristics. It shows the mean and standard deviation for
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continuous variables, and percentage shares as well as number of observations of the values
of factor variables and dummies. Table A.1 provides descriptive statistics of additional
study and estimation characteristics that we use in several robustness checks.

We classify studies according to their use of micro vs macro data; the data dimension
(cross section vs time series vs panel); data frequency (sub-annual vs (multi-)annual; the
number of observations used; dynamic vs static estimation approaches; system vs single
estimation approaches, the use of an elaborate identification strategy (like experiments, ran-
domized control trials, difference-in-difference approaches, regression discontinuity designs,
instrumental variables or generalized methods of moments approaches) or not; whether the
estimation includes a control variable for income; a cross-price control variable for other
energy sources; whether the heating/cooling energy price elasticity is the main focus of the
paper or whether the elasticity is a mere byproduct; a judgment by the authors of the pri-
mary study as to whether they consider an estimate to be their preferred one, an inferior
one or not; and a concern about the quality of the study on our side.” Note that in our
baseline estimations we include observations with quality concerns and those that have been
deemed inferior by the authors of the primary studies. However, we show that our main
results are robust to excluding such estimates.

Data characteristics. The average year of the samples in the primary studies is ca. 1998
to 1999. The average number of observations is large due to some studies with sizeable
micro datasets. Two-thirds of the estimates stem from macro data and around 75 percent
use data with an annual or multi-year frequency. More than half of the estimates stem from
panel studies (multi-country, multi-sector or micro panels) while a quarter uses time series
data.

Estimation characteristics. Around 50 percent of the estimates stem from dynamic es-
timations and most of them are single equation estimations instead of system estimations

(ca. 15 percent). About a third of the estimates, in particular short-run estimates use an

5Quality concerns flagged by us can be categorized as follows: (i) unclear or problematic research design,
(ii) inconsistent results/reporting, (iii) implausible values of model validation, (iv) authors question their
own results, (v) data limitations or (vi) issues with language, clarity, or formatting.
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Table A.1: Descriptive statistics for additional study characteristics

Time Horizon

short run long run
mean or share SD or freq mean or share SD or freq
no. of obs 348,833 (1.29¢-+06) 48,242 (433,795)
average year 1999 (12.65) 1998 (12.57)
macro data 60.04% 71.32%
frequency >=Annual 71.90% 82.91%
cross, time, panel
cross section 17.39% 466 16.35% 375
time series 26.68% 715 28.51% 654
panel 55.93% 1,499 55.14% 1,265
dynamic estimation 56.79% 55.01%
system estimation 13.25% 18.48%
identified 34.78% 20.88%
income control 82.05% 81.17%
cross-price control 34.89% 38.27%
top journal 21.60% 22.76%
log citations 3.28 (1.69) 3.41 (1.53)
byproduct 12.20% 14.56%
judgment estimate
inferior 8.21% 220 7.41% 170
random 82.99% 9,924 79.08% 1,814
prefer 8.81% 236 13.51% 310
quality concern 13.36% 17.52%

Notes: The table shows descriptive statistics of additional study and estimation characteristics. We separate between
short-run and long-run estimates. We report the mean and standard deviation (SD) for continuous variables and
percentage shares as well as frequencies (freq) for factor variables and dummies. The additional study characteristics

include the number of observations and the average sample year of the estimate, the log no.

of citations of the

study, whether the estimate is based on micro or macro data, the frequency of the data (annual or multi-year vs
below-annual), the dimension of the data (cross-section, time series, panel) estimation specifics (dynamic vs static
estimation, system vs single-equation, specific identification approach (IV, DID, RCT, experiment, discontinuity) or
not, controlling for income in the regression, controlling for other energy prices in the regression), whether the study
is published in a top journal or not, whether the elasticity is the main focus of the study or merely a byproduct, how
the primary study authors judge the estimate (preferred, random or inferior) and whether we flag a quality concern
for the estimate or not. Statistics for the main variables are shown in Table 1 in Section 2.
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identification approach like IVs, natural experiments, or DID designs. Most estimations
control for income and about one-third includes cross price controls.

Publication characteristics. About three quarters of the observations stem from jour-
nal publications, and we classify around 20 percent as published in high-ranking jour-
nals, according to a Scimago Journal Rating above 3 (the ranking is based on data from
resurchify.com and was downloaded in April 2024). About 13 percent of the observations
come from studies in which the price elasticity is a byproduct and not the main coefficient of
interest. About 8 percent of estimates are considered inferior by the authors of the primary
studies (usually because they doubt the regression specification) while around 10 percent
are deemed preferential estimates. We flag around 15 percent of the estimates with a quality

concern.

A.3 Histograms

Figure A.2 shows the histograms of the elasticities separately for a number of major study

and estimation characteristics. Outliers are winsorized at the 2nd and 98th percentiles.
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Figure A.2: Histograms of elasticities for major subsamples
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A.4 Other reviews

Table A.2: Other systematic reviews on the price elasticity of energy demand

Study Energy Source Average Elasticity
Short Run Long Run
Chali et al., 2018 Natural Gas —0.718 0.281
Espey & Espey, Electricity —0.35 —0.85
2004
Labandeira et al., Electricity —0.20 —0.51
2017
Natural Gas —0.18 —0.57
Heating Oil —0.19 —0.54
Diesel —0.16 —0.39
Gasoline —0.20 —0.53
Havranek et al., Gasoline —0.09 —0.31
2012
Brons et al., 2008 Gasoline —0.34 —0.84
Espey, 1998 Gasoline —0.26 —0.58
Espey, 1996 Gasoline —0.53
Graham & Glaister, (car) Fuel —0.25 —0.77
2004
Goodwin et al., (vehicle) Fuel —0.25 —0.64
2004

Notes: The table summarizes the price elasticities of energy demand as found in other meta-analyses and systematic

reviews.

A.5 Al summary

Prompt. We used the following prompt with GPT-40 mini via chatgpt.com on February

24, 2025: “Please provide an estimate of the price elasticity of demand for heating and
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cooling in buildings separately for short-run and long-run estimates. The estimate should
take into account all available scientific studies, not just one prominent study. At the same
time, the estimate should rigorously summarize the conventional wisdom in the literature.
Answer like an economist and expert in this field. Provide the best possible point estimate
of the effect together with the corresponding 95 percent confidence intervals.”

Answer. “The price elasticity of demand for heating and cooling in buildings can vary
significantly between the short run and the long run due to differences in consumer behavior
and the ability to adjust to price changes over time. Based on a thorough review of the
academic literature, we can provide separate estimates for both time frames.

Short-Run Estimates. In the short run, consumers have limited ability to adjust their
heating and cooling usage in response to price changes. This is primarily due to the fixed
nature of many heating and cooling systems and the immediate need for comfort. The
literature generally suggests that the short-run price elasticity of demand for heating and
cooling is relatively inelastic.

Long-Run FEstimates. In the long run, consumers have more flexibility to adjust their
energy consumption. They can invest in energy-efficient technologies, change their behavior,
or even modify their living conditions (e.g., moving to different homes or retrofitting existing
ones). As a result, the long-run price elasticity of demand for heating and cooling tends to

be more elastic than in the short run.

e Point Estimate: Approximately —0.5 to —0.8
e Best Point Estimate: —0.6

e 95% Confidence Interval: [—0.4, —0.8]

Summary. In summary, the conventional wisdom in the literature indicates that the price

elasticity of demand for heating and cooling in buildings is approximately:
o Short Run: -0.3 (95% CI: [-0.1, —0.5])

o Long Run: -0.6 (95% CI: [-0.4,—-0.8])
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These estimates reflect the essential nature of heating and cooling services, with consumers
showing a moderate response to price changes over the long term compared to the short

term.”

Appendix B Further details on publication bias

B.1 Robustness of density plots

This appendix provides further information on the z-statistic density plots developed by
Brodeur et al. ( ), as discussed in Subsection 3.1. Figure B.1 considers the distribution
of z-statistics if we do not winsorize point estimates and standard errors. The heaping just
below standard significance thresholds is somewhat stronger in this case, but the qualitative

results are unchanged.

Figure B.1: z-stat densities with counterfactuals — without winsorization
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Notes: The figures replicate Figure 1 when we do not winsorize the point estimates and standard errors in our
sample.

Figure B.2 builds on Figure B.1 and additionally includes observations, whose standard

errors were calculated based on significance thresholds. As expected, the heaping would be

49



more extreme, but this is an artifact of the data collection with limited information on the

exact inference statistics.

Figure B.2: z-stat densities with counterfactuals — without winsorization, including
threshold-based precision measures
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Notes: The figures replicate Figure 1 when we do not winsorize the point estimates and standard errors in our
sample and if we don’t exclude observations, whose standard errors were calculated based on significance thresholds
(i.e. we only had information on significance stars and similar indicators.

Figure B.3 considers a sample excluding inferior estimates according to the judgment of
primary study authors and estimates with quality concerns according to our assessment.
The results are rather similar to the main sample.

Figure B.4 shows results of binomial proportion tests comparing the number of significant
vs insignificant observations for wider or smaller symmetric intervals around the respective
threshold. The shares of just significant and insignificant results should be similar in the
absence of p-hacking. Clear signs of p-hacking can be observed for the popular 95 percent
threshold for short-run estimates. This is also, where we would expect p-hacking to be
most prevalent. Long-run estimates are often derived indirectly from dynamic estimation

specifications, and statistical significance receives less attention.
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Figure B.3: z-stat densities with counterfactuals — no inferior estimates, no quality concerns
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Notes: The figures replicate Figure 1 for the sample excluding inferior estimates according to the judgment of
primary study authors and estimates with quality concerns according to our assessment.

B.2 Conditional publication probabilities: details

This appendix provides additional information on the results from the publication bias test
developed by Andrews and Kasy ( ), presented in Subsection 3.2. Table B.1 shows the
precise numbers and inference statistics for the conditional publication probabilities shown
in Figure 2.

Figure B.5 replicates Figure 2 with more cutoffs specified at z = 0, z = £1.645, z = +1.96

and z = +£2.576. Table B.2 shows the related precise numbers and inference statistics.

B.3 Further information on funnel asymmetry and publication bias

Figure B.6 replicates Figure 3 and highlights observations that the primary authors deemed
inferior and quality concerns according to our assessment.

Table B.3 shows the robustness of our findings from the preferred PEESE specification
in Table 2 with respect to different levels of winsorization. Note that the findings change

strongly if we do not winsorize at all (column 1). This is due to the fact that the no-
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Figure B.4: Randomization tests at different significance thresholds
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(c) Short run (95%)

Binomial test for p—hacking around z = 2.576 (99 % level) - short run
Point shading shows stat. significance of bunching (binomial test against > 50%)
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Binomial test for p—hacking around z = 1.645 (90 % level) - long run
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(b) Long run (90%)

Binomial test for p—hacking around z = 1.96 (95 % level) - long run
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(d) Long run (95%)
Binomial test for p—hacking around z = 2.576 (99 % level) - long run
Point shading shows stat. significance of bunching (binomial test against > 50%)
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Notes: The figures provide formal tests for the visual inspection in Figure 1. They show results of binomial
proportion tests comparing the number of significant vs insignificant observations for wider or smaller symmetric
intervals around the respective threshold. The left column considers short-run estimates and the right column the
long-run estimates. The rows refer to standard significance thresholds (90 percent, 95 percent, 99 percent). In each
graph, the horizontal axis shows the size of the window around the significance thresholds, measured in z-values.
The vertical axis measures the share of statistically significant observations according to the threshold. Thus, each
dot shows the share of significant estimates in the respective window and the point shading signals whether this
share is statistically significantly different from 50 percent. The smaller black dots in the little subfigures show the

number of observations included in each window.



Table B.1: AK estimation; cutoff: z = 1.96

Short run Long run

mean beyond bias 0.028 -0.109

(0.014) (0.045)

(—00, —1.96] 23.614 0.988

(0.961) (1.022)

(—1.96, 0] 7.567 5.449

(1.138) (0.633)

(0, 1.96] 2.570 2.837

(0.433) (0.542)

Obs. 2437 1850
Notes: The table shows details of the test for conditional publication probabilities according to Andrews and Kasy
( ) separately for the short run and the long run estimates. It refers to Figure 2 in Subsection 3.2. Cutoffs are

specified at z = 0 and z = +1.96. The first row provides the estimate for the corrected effect. The other rows show the
relative publication probabilities in comparison to the reference category of positive and statistically significant (at
the 5 percent level, z > 1.96) estimates whose publication probability is normalized to 1. Clustered standard errors
are given in parentheses.

Figure B.5: Conditional publication probabilities

=
o
S)

= w
o ©
o [S)

Publication probability (log scale)

w

=}
|
o

—

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
z z

Publication probability (log scale)
5

o
w
=}
o

(a) Short run (b) Long run

Notes: The figures show relative publication probabilities on the vertical axis in logarithmic scale for typical ranges
of the z-statistics of short-run (left panel) and long-run (right panel) price elasticities of demand displayed on the
horizontal axis. Cutoffs are specified at z =0, z = £1.645, z = +1.96 and z = £2.576. The publication probability
of observations with z > 2.576 is normalized to 1. Observations where the standard error was calculated from
thresholds are excluded. Shaded areas show 89% confidence bands. Table B.2 provides the precise numerical results
and inference statistics. For further details see notes for Figure 2 and Subsection 3.2.
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Table B.2: AK estimation; cutoffs: z =1.645, 1.96, 2.576

Short run Long run

mean beyond bias 0.049 -0.061
(0.017) (0.078)

(—00, —2.576) 31.038 14.828
(1.909) (0.889)

(—2.576, —1.96] 34.451 20.530
(5.253) (3.454)

(—1.96, —1.645] 17.202 16.072
(3.450) (2.340)

(—1.645,0] 9.342 7.886
(1.338) (1.502)

(0, 1.645] 3.269 4.486
(0.581) (1.233)

(1.645,1.96] 1.987 1.844
(0.693) (2.263)

(1.96,2.576] 1.474 2.594
(0.428) (2.340)

Num.Obs. 2437 1850

Notes: The table shows details of the test for conditional publication probabilities according to Andrews and Kasy
( ) separately for the short run and the long run estimates. It refers to Figure B.5. Cutoffs are specified at z = 0,

z = +1.645, z = +£1.96 and z = +2.576. The first row provides the estimate for the corrected effect. The other
rows show the relative publication probabilities in comparison to the reference category of positive and statistically
significant (at the 1 percent level, z > 2.576) estimates whose publication probability is normalized to 1. Clustered
standard errors are given in parentheses.
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Notes: The figures present funnel plots, which are scatter plots of the effect size on the horizontal axis and the
precision of the estimate (the inverse of the standard error, 1/SE) on the vertical axis. The left panel includes the
short-run funnel, while the right panel shows a long-run funnel plot. The figures replicate Figure 3. The graph
marks all statistically significant (at the 5% level) observations in blue rings and the statistically insignificant values
as gray dots. Observations that were deemed inferior by the primary authors are marked as red ‘x’ and quality
concerns by us are marked as green ‘+’. The red solid vertical lines represent the unweighted average elasticity of the
short and long-term, respectively.

winsorization case features outliers with very high precision that would receive a large
weight in the WLS estimation. Any other small or large winsorization produces coefficients
that are close to the baseline case (2-98p).

Table B.4 and Table B.5 replicate Table 2 and Table 3 for the subsample without inferior
estimates and quality concerns. The findings are qualitatively similar, but the corrected
elasticities are even a bit closer to zero on average.

Figure B.7 shows the graphical output of the stem-based method, referred to in column

(3) of Table 3.
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Table B.3: PEESE with different winsorization levels

short run 0-100p 1-99p 2-98p 3-97p 4-96p 5-95p
51 -6.120 -2.426 -2.939 -3.339 -3.625 -3.960
pubbias (2.656) (1.171) (1.047) (1.117) (1.051) (1.022)
Bo 0.142 -0.145 -0.146 -0.151 -0.154 -0.155
mean (0.148) (0.0652) (0.0492) (0.0458) (0.0399) (0.0357)
Obs. 2680 2680 2680 2680 2680

Adj. R? 0.001 0.002 0.002 0.003 0.005

long run 0-100p 1-99p 2-98p 3-97p 4-96p 5-95p
51 -0.354 -1.341 -1.639 -2.064 -2.210 -2.381
pubbias (0.139) (0.449) (0.553) (0.683) (0.744) (0.816)
Bo -0.0126 -0.193 -0.231 -0.245 -0.262 -0.272
mean (0.0122) (0.0755) (0.0673) (0.0637) (0.0606) (0.0585)
Obs. 2294 2294 2294 2294 2294

Adj. R? 0.001 0.001 0.002 0.003 0.003

Notes: The table replicates column (6) in Table 2 in Subsection 3.4 considering different levels of winsorization of the
elasticity estimates and their squared standard errors from percentiles 0 and 100 to percentiles 5 and 95.

Table B.4: Linear publication bias tests: without inferior estimates and quality concerns

short run. (1)UA  (2)UWLS (3)OLS (4)FE (5)PET (6)PEESE (7)Median
b1 -0.981  -0.780  -2.530  -4.168 -3.622
pubbias (0.181)  (0.153) (0.375)  (0.752) (0.576)
Bo -0.285  -0.0960 -0.162  -0.187 -0.0605 -0.0938 -0.0470
mean (0.0234) (0.0228)  (0.0195) (0.0190) (0.0257) (0.0230)  (0.0123)
Obs. 2113 2113 2113 2113 2113 2113 189
Adj. R? 0.000 0.229 0.198 0.120 0.071 0.013 0.169
long run ~ (1)UA  (2)UWLS (3)OLS (4)FE (5)PET (6)PEESE (7)Median
B1 -0.460 -0.423 -2.366 -2.215 -1.782
pubbias (0.183)  (0.185)  (0.326)  (0.450) (1.084)
Bo -0.400  -0.125 -0.298  -0.306 -0.0879  -0.123 -0.192
mean (0.0349) (0.0282)  (0.0289) (0.0411) (0.0287) (0.0281)  (0.0340)
Obs. 1741 1741 1741 1741 1741 1741 160
Adj. R? 0.000 0.227 0.064 0.056 0.070 0.010 0.010

Notes: The table replicates Table 2 in Subsection 3.4 when excluding estimates that were deemed inferior by the
primary study authors and those flagged with quality concerns by us.
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Table B.5: Nonlinear

underlying effects: without inferior estimates and quality concerns

short run (1) AK (2) WAAP (3) Stem (4) MAIVE
mean beyond bias 0.007 -0.0863 -0.055 -0.125

0.020 (0.0241) (0.09) (0.0413)
Observations 1894 607 4 2022
1st stage F' 11.39
long run (1) AK (2) WAAP (3) Stem (4) MAIVE
mean beyond bias -0.080 -0.111 -0.016 -0.126

0.030 (0.0282) (0.0958) (0.0395)
Obs. 1341 282 7 1670
1st stage F' 13.81

Notes: The table replicates Table 3 in Subsection 3.4 when excluding estimates that were deemed inferior by the
primary study authors and those flagged with quality concerns by us.
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Notes: The figure shows the funnel plots and selection of the stem for the short and long-run estimates according to
the method of Furukawa (2019). The resulting mean beyond bias is shown in Table 3 in Subsection 3.4.
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Appendix C Further details on heterogeneity

C.1 Multivariate Meta Regression

This appendix provides further results of the multivariate meta-regressions in Subsection 4.2.
Table C.1 shows the additional coefficients for columns (3) to (6) of Table 4.

Table C.2 uses the baseline selection of control variables and shows the findings for sub-
samples with different quality criteria. Column (1) excludes estimates that are either deemed
inferior by the primary study authors or where we flagged a quality concern (due to incon-
sistent, incomplete or incomprehensible reporting, or suspicious research designs). Column
(2) considers only those estimates that were marked as preferred by the authors of the pri-
mary studies. Column (3) looks at only those studies that control for income and prices
of other energy sources, thus accounting for income and cross-price effects. Column (4)
considers only those estimates that use a clear identification strategy, e.g. instrumentation,

difference-in-differences, or quasi-experimental research designs.

C.2 Bayesian Model Averaging (BMA)

This appendix presents the results from the BMA as discussed in Subsection 4.3. Figure C.1
visualizes the inclusion probabilities of moderator variables and the sign of their coefficients
for the universe of selected models in the BMA.

Table C.3 summarizes important statistics from the BMA for all moderator variables.
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Table C.1: Multivariate meta regression, coeflicients of further controls

(3) data (4) estim (5) public (6) all
sample avg.year -0.00287 -0.00280
(0.00224) (0.00168)
macro data 0.159 0.128
(0.0850) (0.0612)
crossec -0.0932 0.118
(0.125) (0.0992)
timeseries -0.0353 -0.0468
(0.0444) (0.0386)
frequency >=Annual -0.0884 -0.0788
(0.0465) (0.0402)
dynamic estimation -0.00563 -0.00489
(0.0378) (0.0341)
system estimation -0.218 -0.208
(0.0618) (0.0442)
identified 0.0532 0.0942
(0.0381) (0.0403)
income control 0.0725 0.0226
(0.0510) (0.0710)
cross-price control -0.152 -0.167
(0.0453) (0.0410)
top journal 0.0128 -0.0502
(0.0751) (0.0578)
log citations -0.00331 0.0182
(0.0186) (0.0148)
byproduct 0.173 0.128
(0.0644) (0.0418)
inferior 0.177 0.138
(0.0823) (0.0623)
prefer 0.0923 0.0618
(0.0403) (0.0441)

Notes: The table shows the additional coefficients for columns (3) to (6) of Table 4. Column (3) includes controls
characterizing the data used in the primary studies (micro vs macro data; cross-sectional vs time series vs panel
data; higher or lower than annual data frequency ). Column (4) includes controls concerning estimation methods
in the primary studies (dynamic estimation; system estimation; identification; controlling for income; controlling for
other energy source prices). Column (5) includes controls related to publication details (top-journal publication vs
rest; logarithm of number of citations; price elasticity is main research question or byproduct; primary authors judge
estimate as preferred, random or inferior. The reference categories are given in italics. Standard errors in parentheses
are clustered at the study level.
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Table C.2: Multivariate meta regression, subsamples with quality criteria

(1) quality (2) prefer (3) income-xprice (4) identification

Constant -0.0966 -0.0622 -0.250 -0.126
(0.0294) (0.0334) (0.0681) (0.0542)

SE? -2.604 -4.917 -2.330 -4.421
(0.457) (1.146) (0.751) (0.851)

long run -0.0351 -0.111 -0.0140 -0.0133
(0.0308) (0.0707) (0.0541) (0.0358)

natural gas -0.00776 0.0417 0.149 0.127
(0.0519) (0.0518) (0.104) (0.0470)

esource other -0.0906 -0.0454 -0.274 0.0138
(0.0642) (0.0651) (0.146) (0.0695)

heating -0.0259 -0.000110 0.106 -0.149
(0.0474) (0.0461) (0.0913) (0.0436)

cooling -0.113 -0.140 0.0217 -0.0895
(0.0439) (0.0319) (0.161) (0.0173)

non-market, mix -0.0117 -0.0294 -0.0469 0.0302
(0.0274) (0.0385) (0.0350) (0.0516)

non OECD -0.0445 -0.00676 -0.193 -0.0268
(0.0616) (0.0868) (0.169) (0.0548)

mixed OECD 0.0504 0.0680 0.286 0.101
(0.0332) (0.0362) (0.104) (0.0342)

business 0.0619 0.0845 0.252 0.0976
(0.0343) (0.0862) (0.0833) (0.0528)

sector mix 0.108 0.109 0.258 -0.0917
(0.0465) (0.0819) (0.0924) (0.0531)

Obs. 3854 546 1480 1411
Adj. R? 0.104 0.254 0.498 0.122

Notes: The table shows results of WLS regressions (with inverse variance weights) according to Eq. (2) with the
PEESE correction for publication bias and including moderator variables in X. See Table 4 for description of variables.
Column (1) excludes estimates that are either deemed inferior by the primary study authors or where we flagged
a quality concern. Column (2) considers only those estimates that were marked as preferred by the authors of the
primary studies. Column (3) looks at only those studies that control for income and prices of other energy sources, thus
accounting for income and cross-price effects. Column (4) considers only those estimates that use a clear identification
strategy, e.g. instrumentation, difference-in-differences, or quasi-experimental research designs. Standard errors in
parentheses are clustered at the study level.
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Figure C.1: BMA summary plot

Model Inclusion Based on Best 4476 Models
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Notes: The figure visualizes inclusion probabilities and signs of coefficients of the moderator variables in the selected
models. The blue color corresponds to a positive BMA-average coefficient, red to a negative coefficient, and white to
non-inclusion. The horizontal axis shows the best models, scaled by posterior model probability. The best model
from the BMA is shown in the first column.
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Table C.3: BMA results
PIP Post Mean Post SD Cond.Pos.Sign

SE? 1.000 -0.393 0.025 0.000
horizond_ long run  1.000 -0.122 0.013 0.000
macrod_micro 1.000 -0.109 0.019 0.000
datadimec crosssec  1.000 -0.115 0.021 0.000
datafreqd_ <Annual 1.000 0.094 0.016 1.000
estsysd_ Yes 1.000 -0.122 0.018 0.000
topjourd__Yes 1.000 -0.156 0.016 0.000
preferc__inferior 1.000 0.145 0.024 1.000
estdynd_No 1.000 -0.085 0.015 0.000
energyusec_ cool 1.000 -0.173 0.034 0.000
energysourcem_ natgas 0.898 0.051 0.023 1.000
byproduct_ Yes 0.869 0.057 0.028 1.000
sectorc_sector mix 0.844 0.067 0.036 1.000
OECDc_mixed OECD 0.389 0.033 0.046 1.000
xpricecontd_ Yes 0.359 -0.013 0.019 0.000
sectorc_ business 0.188 -0.007 0.017 0.000
energysourcem_ other 0.077 0.003 0.010 1.000
energyusec__heat 0.056 -0.002 0.008 0.018
datadimc timeseries 0.046 -0.001 0.006 0.000
OECDc_non OECD 0.041 -0.001 0.005 0.001
identifd_Yes 0.036 0.001 0.005 1.000
logcit  0.036 -0.000 0.001 0.000
pricechanged_non-market, mix 0.029 -0.000 0.003 0.000
preferc_ prefer 0.024 0.000 0.004 1.000
inccontrd No 0.022 0.000 0.003 1.000
avyearcd 0.019 0.000 0.000 0.574

(Intercept) 1.000 -0.166

Notes: PIP shows the posterior inclusion probability for each variable. Post Mean shows the coefficients averaged
across models, including models which excluded the variable (implying a zero coefficient). Cond.Pos.Sign indicates the
sign certainty across models, 1 meaning a positive coefficient across all models and 0 implying a negative coefficient
across all models.
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